Skip to main content

A stacking library for ensemble learning

Project description

Library for stacking(Stacked generalization)

|PyPI version| |license|

About this library(watch test folder for more detailed)

1. Set train and test dataset under data/input.

2. Created features from original dataset need to be under

3. Models for stacking are defined in scripts under scripts folder.

4. Need to define created features in that scripts.

5. Just run ``sh`` (``python scripts/``)


Getting started: 30 seconds to stacking



To install stacking, ``cd`` to the stacking folder and run the install


sudo python install

You can also install stacking from PyPI:


pip install stacking


Tree of files

- base\_fixed\ (class of stacking)
- data/
- input/

- train.csv (train dataset)
- test.csv (test dataset)

- output/

- features/
- features.csv (features user created)
- temp/
- temp.csv (files saved in stacking)

- scripts/
- script.csv (main script where concrete models defined)


Details of scripts

- Base models for stacking are defined here (using
- Some models are defined here. e.g., XGBoost, Keras, Vowpal Wabbit.
- These models are wrapped as scikit-learn like (using
sklearn.base.ClassifierMixin, sklearn.base.RegressorMixin).
- That is, model class has some methods, fit(), predict\_proba(), and

New user-defined models can be added here.

Scikit-learn models can be used.

Base model have some arguments.

- 's': Stacking. Saving a oof(out-of-fold)
prediction({model\_name}\_all\_fold.csv) and average of test
prediction based on train-fold models({model\_name}\_test.csv). These
files will be used for next level stacking.

- 't': Training with all data and predict
test({model\_name}\_TestInAllTrainingData.csv). In this training, no
validation data are used.

- 'st': Stacking and then training with all data and predict test ('s'
and 't').

- 'cv': Only cross validation without saving the prediction.

Define several models and its parameters used for stacking. Define task
details on the top of script. Train and test feature set are defined
here. Need to define CV-fold index.

Any level stacking can be defined.



Need to be more general library.

Please check isuues!!

.. |PyPI version| image::
.. |license| image::

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for stacking, version 0.1.3
Filename, size File type Python version Upload date Hashes
Filename, size stacking-0.1.3.tar.gz (12.5 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page