Skip to main content

A tool for H&E image augmentation

Project description

example augmentation

A lightweight wrapper for image normalization implemented by DIAGNijmegen, which used deconvolution based methods from Faryna et al. and Tellez et al..

Installation

pip install stainaug

Basic Usage

import PIL.Image as Image
import numpy as np

from stainaug import Augmentor

# read in image
image_filepath = </path/to/image.jpeg>
img = np.asarray(Image.open(image_filepath))

# initialize augmentor
augmentor = Augmentor()

# transform image
augmented_img = augmentor.augment_HE(img)

Examples

For more examples see notebook here

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stainaug-0.0.4.tar.gz (7.0 kB view details)

Uploaded Source

File details

Details for the file stainaug-0.0.4.tar.gz.

File metadata

  • Download URL: stainaug-0.0.4.tar.gz
  • Upload date:
  • Size: 7.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for stainaug-0.0.4.tar.gz
Algorithm Hash digest
SHA256 b3c00072f9af99d8812a7a7918a9d7093968f88e450d50fc849e70d8d35350af
MD5 45d4dd44fb5fa7413049fd94c013a9a4
BLAKE2b-256 875e3146e32d5d324a8fec2eb6db828c921d4fb7675a732a27ca19dba5b561d6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page