A tool for H&E image augmentation
Project description
A lightweight wrapper for image normalization implemented by DIAGNijmegen, which used deconvolution based methods from Faryna et al. and Tellez et al..
Installation
pip install stainaug
Basic Usage
import PIL.Image as Image
import numpy as np
from stainaug import Augmentor
# read in image
image_filepath = </path/to/image.jpeg>
img = np.asarray(Image.open(image_filepath))
# initialize augmentor
augmentor = Augmentor()
# transform image
augmented_img = augmentor.augment_HE(img)
Examples
For more examples see notebook here
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
stainaug-0.0.4.tar.gz
(7.0 kB
view details)
File details
Details for the file stainaug-0.0.4.tar.gz
.
File metadata
- Download URL: stainaug-0.0.4.tar.gz
- Upload date:
- Size: 7.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b3c00072f9af99d8812a7a7918a9d7093968f88e450d50fc849e70d8d35350af |
|
MD5 | 45d4dd44fb5fa7413049fd94c013a9a4 |
|
BLAKE2b-256 | 875e3146e32d5d324a8fec2eb6db828c921d4fb7675a732a27ca19dba5b561d6 |