Skip to main content

STAM is a library for dealing with standoff annotations on text, this is the python binding.

Project description

stam logo

Docs PyPI PyPI GitHub build GitHub release Project Status: Active – The project has reached a stable, usable state and is being actively developed. Technology Readiness Level 7/9 - Release Candidate - Technology ready enough and in initial use by end-users in intended scholarly environments. Further validation in progress.

STAM Python binding

STAM is a data model for stand-off text annotation and described in detail here. This is a python library (to be more specific; a python binding written in Rust) to work with the model.

What can you do with this library?

  • Keep, build and manipulate an efficient in-memory store of texts and annotations on texts
  • Search in annotations, data and text:
    • Search annotations by data, textual content, relations between text fragments (overlap, embedding, adjacency, etc),
    • Search in text (incl. via regular expressions) and find annotations targeting found text selections.
    • Search in data (set,key,value) and find annotations that use the data.
    • Elementary text operations with regard for text offsets (splitting text on a delimiter, stripping text).
    • Convert between different kind of offsets (absolute, relative to other structures, UTF-8 bytes vs unicode codepoints, etc)
  • Read and write resources and annotations from/to STAM JSON, STAM CSV, or an optimised binary (CBOR) representation
    • The underlying STAM model aims to be clear and simple. It is flexible and does not commit to any vocabulary or annotation paradigm other than stand-off annotation.

This STAM library is intended as a foundation upon which further applications can be built that deal with stand-off annotations on text. We implement all the low-level logic in dealing this so you no longer have to and can focus on your actual application.

Installation

$ pip install stam

Or if you feel adventurous and have the necessary build-time dependencies installed (Rust), you can try the latest development release from Github:

$ pip install git+https://github.com/annotation/stam-python

Documentation

Usage

Import the library

import stam

Loading a STAM JSON (or CSV) file containing an annotation store:

store = stam.AnnotationStore(file="example.stam.json")

The annotation store is your workspace, it holds all resources, annotation sets (i.e. keys and annotation data) and of course the actual annotations. It is a memory-based store and you can put as much as you like into it (as long as it fits in memory).

You can optionally pass configuration parameters upon loading a store, as follows:

store = stam.AnnotationStore(file="example.stam.json", config={"debug": True})

Once loaded, you can retrieve anything by its public ID:

annotation = store.annotation("my-annotation")
resource = store.resource("my-resource")
dataset = store.dataset("my-annotationset")
key = dataset.key("my-key")
data = dataset.annotationdata("my-data")

You can also iterate through all annotations in the store, and output a simple tab separated format:

for annotation in store.annotations():
    # get the text to which this annotation refers (if any)
    try:
        text = str(annotation)
    except stam.StamError:
        text = "n/a"
    for data in annotation:
        print("\t".join(( annotation.id(), data.key().id(), str(data.value()), text)))

Adding a resource:

resource = store.add_resource(filename="my-text.txt")

Create a store and annotations from scratch:

from stam import AnnotationStore, Selector, AnnotationDataBuilder

store = AnnotationStore(id="test")
resource = store.add_resource(id="testres", text="Hello world")
store.annotate(id="A1", 
                target=Selector.textselector(resource, Offset.simple(6,11)),
                data={ "id": "D1", "key": "pos", "value": "noun", "set": "testdataset"})

In the above example, the AnnotationDataSet , DataKey and AnnotationData are created on-the-fly. You can also create them explicitly within the set first, as shown in the next snippet, resulting in the exact same store:

store = AnnotationStore(id="test")
resource = store.add_resource(id="testres", text="Hello world")
dataset = store.add_dataset(id="testdataset")
dataset.add_key("pos")
data = dataset.add_data("pos","noun","D1")
store.annotate(id="A1", 
    target=Selector.textselector(resource, Offset.simple(6,11)),
    data=data)

Providing the full data dictionary as in the earlier example would have also worked fine, with the same end result, but would be less performant than passing an AnnotationData instance directly. The implementation will always ensure any already existing AnnotationData will be reused if possible, as not duplicating data is one of the core characteristics of the STAM model.

You can serialize the entire annotation store (including all sets and annotations) to a STAM JSON file:

store.set_filename("example.stam.json")
store.save()

For more documentation, please read: STAM Tutorial: Standoff Text Annotation for Pythonistas.

Differences between the rust library and python library and performance considerations

Although this Python binding builds on the Rust library, the API it exposes differs in certain aspects to make it more pythonic and easier to work with. This results in a higher-level API that hides some of the lower-level details that are present in the Rust library. This approach does come at the cost of causing some additional runtime overhead.

The Rust methods will often return iterators, references or handles whenever they can, moreover it will do so safely. The Python API is often forced to make a local copy. For iterators we often decide to let the entire underlying Rust iterator run its course and then return the result as a whole as a tuple, rather than return a Python generator. Here you gain some speed at the cost of some memory.

Probably needless to say, but using Rust directly will always be more performant than using this Python binding. However, using this Python binding should still be way more performant than if the whole thing were implemented in native Python. The trick is in letting the binding work for you as much as possible, use higher-level methods whenever they are available rather than implementing your logic in Python.

Acknowledgements

This work is conducted at the KNAW Humanities Cluster's Digital Infrastructure department, and funded by the CLARIAH project (CLARIAH-PLUS, NWO grant 184.034.023) as part of the FAIR Annotations track.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stam-0.10.1.tar.gz (88.5 kB view details)

Uploaded Source

Built Distributions

stam-0.10.1-cp313-cp313-musllinux_1_2_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

stam-0.10.1-cp313-cp313-musllinux_1_2_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ ARM64

stam-0.10.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

stam-0.10.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

stam-0.10.1-cp313-cp313-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

stam-0.10.1-cp313-cp313-macosx_10_12_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.13 macOS 10.12+ x86-64

stam-0.10.1-cp312-none-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

stam-0.10.1-cp312-none-win32.whl (2.1 MB view details)

Uploaded CPython 3.12 Windows x86

stam-0.10.1-cp312-cp312-musllinux_1_2_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

stam-0.10.1-cp312-cp312-musllinux_1_2_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

stam-0.10.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

stam-0.10.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

stam-0.10.1-cp312-cp312-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

stam-0.10.1-cp312-cp312-macosx_10_12_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

stam-0.10.1-cp311-none-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

stam-0.10.1-cp311-none-win32.whl (2.1 MB view details)

Uploaded CPython 3.11 Windows x86

stam-0.10.1-cp311-cp311-musllinux_1_2_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

stam-0.10.1-cp311-cp311-musllinux_1_2_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

stam-0.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

stam-0.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

stam-0.10.1-cp311-cp311-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

stam-0.10.1-cp311-cp311-macosx_10_12_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

stam-0.10.1-cp310-none-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

stam-0.10.1-cp310-none-win32.whl (2.1 MB view details)

Uploaded CPython 3.10 Windows x86

stam-0.10.1-cp310-cp310-musllinux_1_2_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

stam-0.10.1-cp310-cp310-musllinux_1_2_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

stam-0.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

stam-0.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

stam-0.10.1-cp310-cp310-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

stam-0.10.1-cp310-cp310-macosx_10_12_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

stam-0.10.1-cp39-none-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

stam-0.10.1-cp39-none-win32.whl (2.1 MB view details)

Uploaded CPython 3.9 Windows x86

stam-0.10.1-cp39-cp39-musllinux_1_2_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

stam-0.10.1-cp39-cp39-musllinux_1_2_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

stam-0.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

stam-0.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

stam-0.10.1-cp39-cp39-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

stam-0.10.1-cp39-cp39-macosx_10_12_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

stam-0.10.1-cp38-none-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

stam-0.10.1-cp38-none-win32.whl (2.1 MB view details)

Uploaded CPython 3.8 Windows x86

stam-0.10.1-cp38-cp38-musllinux_1_2_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

stam-0.10.1-cp38-cp38-musllinux_1_2_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

stam-0.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

stam-0.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

stam-0.10.1-cp38-cp38-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

stam-0.10.1-cp38-cp38-macosx_10_12_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

stam-0.10.1-cp37-none-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.7 Windows x86-64

stam-0.10.1-cp37-none-win32.whl (2.1 MB view details)

Uploaded CPython 3.7 Windows x86

stam-0.10.1-cp37-cp37m-musllinux_1_2_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

stam-0.10.1-cp37-cp37m-musllinux_1_2_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ARM64

stam-0.10.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

stam-0.10.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

stam-0.10.1-cp37-cp37m-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.7m macOS 11.0+ ARM64

stam-0.10.1-cp37-cp37m-macosx_10_12_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.7m macOS 10.12+ x86-64

File details

Details for the file stam-0.10.1.tar.gz.

File metadata

  • Download URL: stam-0.10.1.tar.gz
  • Upload date:
  • Size: 88.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.7

File hashes

Hashes for stam-0.10.1.tar.gz
Algorithm Hash digest
SHA256 c3af72204eefc2df3f118846d8fad6337fd937dd37f0db48f8279e13a5e8b4e6
MD5 23a3385d1785ed07311ceab47769ee9d
BLAKE2b-256 a18b314af3ef3d6b7718382d98363d01626c4175c06f91e6032adab2563a241a

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 69e193edd369fe2e42edbdc8d2a5b79a2d12d88fa5cc4b111d1bec970a21ecf2
MD5 3d8f315b3dc8c84c6cdcad42ff5d5f23
BLAKE2b-256 7b211a8d3c2f93ea4868ba8620de5d50f6be6f5048219db187ec58abb640b6a5

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 bdac2f87670c8d63245d254e77f08b01575914594f49c14c448ccd66eb9ffdeb
MD5 ba2fea3b3cd69e649d802f7f4251e8f0
BLAKE2b-256 861be7ec7475a643d70b080f5c4386fb4c6ad903ced49733e572485d28ad96c7

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d5480577eab594c30735d7dfb9eee978bb1919b6f14f381c09e4b112f3d2d976
MD5 46cc0c2301199b50d77ee8fc7708b322
BLAKE2b-256 1f8bd0f51ecda2725091ef6fc4dca13a8e61122678b804688c18110dd73e7922

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dc93498fc159ac1c4c901523b2ef281878ef73ee00e15c26305e49ca5d2a3d2e
MD5 e4d73af1028612f5d01a9c32fa020205
BLAKE2b-256 198a6ed59fed380b3e117ba4984c11e1d333eff7d6f26f796556827094a375be

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3d83a0b90e54bbc6dbf706ec7bc60079adfa745274b30cbfd27a1e93f102d4ae
MD5 3fed51cd31ae208da09f4248c8d627aa
BLAKE2b-256 6a783e542882143933d8f2d9771fd0853d9d3c3411603b1b0f31b970057c058d

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp313-cp313-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp313-cp313-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 f63ee4bda975ee137d58cc638b07e0b427843bd09bb7cbc41a949b48a1a88b2e
MD5 3f4635af7793430368d8cb7a5364df61
BLAKE2b-256 2823b0c1e0d0fffa3e8bfe58cee34b336f1a066a029cec78694805abda236799

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp312-none-win_amd64.whl.

File metadata

  • Download URL: stam-0.10.1-cp312-none-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.7

File hashes

Hashes for stam-0.10.1-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 f90d0fd1307b48357ef7a867837ead0faa1a77061350a6f881f282869c759591
MD5 3c033ecff7882b06b5c2354c98d7dffd
BLAKE2b-256 dfab8b32be35156d6a1103b35e0ac0b75eac82b72a9760948c21801393d144e4

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp312-none-win32.whl.

File metadata

  • Download URL: stam-0.10.1-cp312-none-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.7

File hashes

Hashes for stam-0.10.1-cp312-none-win32.whl
Algorithm Hash digest
SHA256 c855fcf01900542e7ba6a1232d68645b04aadf53ae9773b48546c395d05e5049
MD5 62ee5fb3d7575ee6e3a099877f1e4fed
BLAKE2b-256 ae9580b1529943b4e70ec87e41b3ff422900e84f0642c8b0301b23a963d485b3

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 ca44305f78a2dbf7ebabb6cf6c7ca05c5baec8263da89858c3fc5f306fc291af
MD5 dca6297e68fd17047b562a1fbedbf0ed
BLAKE2b-256 ac50bf49f1bee14fa3370cd52d4a6e12fb590103706883624731bcbeda4fe727

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 15275760e730f64e176512e679862c189a02f0c4f0421f06c0b2deae405bd372
MD5 16f912a86c25d61a8a5c5e8a208e0e8e
BLAKE2b-256 e0c588e35f614532ee853567377cda2e7dbaaff9e6ae6bdd56d41a6acce1cc52

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c9a01ffab4c9e0ac2564100f52c896eb74c82c235a376ef589c104befc95d6de
MD5 80698112e7bf60a405095e47c68374bf
BLAKE2b-256 8e424d5c7ef4aaa36be9f9d2a2897ff70da0cb97ba231ba050b852b48a2a0b89

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7d23dd7bb6c2f59aa173c6f0ff2ee1a4ba1bd568fe52724e92bb432a4a8d5b1e
MD5 7f96ceb2a8b1a79e29a4b1201d0b69e9
BLAKE2b-256 47caf0257b92e292c24cee651d2b65189c1cb037f127ad6f0e058e9b774a7ba2

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 87a4f98fddf9c580feffb3f8511ea2c7cc31b1c1ef70f67e84e381c43183146b
MD5 a3f0a455db95acd06c0dc1566eb99aa3
BLAKE2b-256 8f10ba0f54d418b39f1cbd1996c376496fd9de090041950ec8daf51008cb484d

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 93392be8b6146bcc04d682e383dc602fe5539e674720ad153c35636ceaecfaa3
MD5 f62b0138a2c4b327c4ad2900dcb0db55
BLAKE2b-256 c19e2cebc02ab1aae03847ec2e94665263111bb984ce0fc329931b8a73159ee1

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp311-none-win_amd64.whl.

File metadata

  • Download URL: stam-0.10.1-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.7

File hashes

Hashes for stam-0.10.1-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 7b201ec8c65ae7433e3a23c5fa275a5dece8b4a20d320111bb73a548945cdd7e
MD5 f4463993fc4733c8cc744dd9cd80e727
BLAKE2b-256 2531361f81ef22ef78fe926cab872508bb32e153a07cf18eb65cc09aed852d39

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp311-none-win32.whl.

File metadata

  • Download URL: stam-0.10.1-cp311-none-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.7

File hashes

Hashes for stam-0.10.1-cp311-none-win32.whl
Algorithm Hash digest
SHA256 0e4c8f8d19ff681b2520538807850b75e56beb36adfb0450c3612023641bf6ae
MD5 d3e22815be962b615337568664e85773
BLAKE2b-256 77135d838bb94681201bb6de156c00758e9fe483df81c236f5f05ebd09f639e0

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4a144dbd6c4af71333ac44f79bffa427c19d42922e12676cefdea3f543d2f110
MD5 80d130b4c36b6f3f891bdec5428310ae
BLAKE2b-256 ee6cebce4a94b7533658932d6c00cb9de970f1a2800d609eba03ed33b00926b6

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 f07db2f5f8d3850a29a121256e9042a75998b008f90b6c8ed3c6c491341c97b9
MD5 6c7edebf319db8368a18fa06bf7ea345
BLAKE2b-256 347fcd734164f42c9585a9e962c8834bf983576bf91802d3f5e8064e89503504

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 305a608e32749fc492aed0ae91897f75deee8b4f259912761580c928379c227d
MD5 0817bb27d068b90fe09cc3934681ebba
BLAKE2b-256 0e7110c6151445213bb11c883384a1b89f6cfeb78a7c83bdc16c41bf3426bda0

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 51dcaab30f89abd80965c1ec22d3dc6f2288ac9d017fab951d01126f40064778
MD5 c46242b8c7304d5acab2df8ba5262d00
BLAKE2b-256 f1ef1dd0d405b8f92364b70b5670b83660d075b5abee63895fc3be987a95a4fc

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9faeafc6c79df4db8260130238c99e8e0fea102c49a0424fe2a438bc9a9f387a
MD5 c4f001097c51cec041a1c6cd92f96ebd
BLAKE2b-256 5b2860c097b2cfbe33fa9b7629e9d89ba37478c48ec6ef21968a50c2f842473b

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 963cbaf0ebc3d329b21e0f60f401c98acb11abe44508ab86a5da9815a7df86aa
MD5 36972a118631dcd42aa8de7033452e45
BLAKE2b-256 f3f8b1748cab04d06f8657e0b9acc3d0349ab1ef6b22f2c0ec647d2df3caf7a3

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp310-none-win_amd64.whl.

File metadata

  • Download URL: stam-0.10.1-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.7

File hashes

Hashes for stam-0.10.1-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 2fb7ffd458a395a137e93e93f84144bf735ed221d82bde65b71145cb4e6c8b76
MD5 bab70155eb77cd2ed9339f53710213e5
BLAKE2b-256 6fd5ada50cb228b2968a0298fffab353fac862d35fbc589288ff69994efe95b2

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp310-none-win32.whl.

File metadata

  • Download URL: stam-0.10.1-cp310-none-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.7

File hashes

Hashes for stam-0.10.1-cp310-none-win32.whl
Algorithm Hash digest
SHA256 af3d7b90f6654e2690d2bb7f3ecf7dcc054dcb72ea029399d66f3ade232d094c
MD5 90158501344f0cf602c577c8111be892
BLAKE2b-256 f7eb676f1c2e5de179486559a871f0d6d4452b54fc6a16a5c940c44966ec5e63

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d2cf860eee5243b46006368df77aa1e763796b8dca03460f0b558a689ebcd0bf
MD5 45ea3db4ce37262b252190cf84cf99e7
BLAKE2b-256 52ee783cc2691546bf6eb00df6b312430e6e08109d1e0c153e62d2f19f03cec1

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 c0a0e98e374beb03ecc3a880d8d9110d91cde1275c19a7d1ee58c434f4bc4326
MD5 d7dc376b53955f7006632d206a08fd27
BLAKE2b-256 399d9ba79ff0e4201dd91136439b957ac9f8eb945e770028c4c7cce36068f101

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f56d80460c96a3891818dd3e3d0f85eac4a2d77adf84f0f3052022c803ee40bd
MD5 31f31a190186629d39b4724388084fdc
BLAKE2b-256 8aca940c3978e75e3cb53db2ce551d0ec2c37a6520c88bb8a3118c85555877cc

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 922c50e371caff2b99621e55945a2a97967ac7e51f57efff503368dbb8143ea6
MD5 08dad6e5f4d90a7ded1c477e53fc4669
BLAKE2b-256 a04aa8b01baee997ee00b0ca8d7f10864cf13548b23f553b6b53b2c8e3369e68

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7c154d0ce2d59c241c51d2b1e20db89bb163ec5b47a59153196bce08a0cf1d40
MD5 b681b27a30c0aa4a4ccac8e832ab8029
BLAKE2b-256 95acf1cdfa67a6dd97a6b02239315c5969ab03cd373a883fc35a58633e4a50fc

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 709ae1215965faf72463eee2d82a874a6ba6247985019d365b1ff83df49db100
MD5 d76f3301c7a4414a64e2738df33c4247
BLAKE2b-256 1191b50dfe7ecd76547e56f8507b9e749c0ecb1d587115a4e53f030d00ee7bb0

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp39-none-win_amd64.whl.

File metadata

  • Download URL: stam-0.10.1-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.7

File hashes

Hashes for stam-0.10.1-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 6173c42235b256c300d2c11286593b7356162c636547d1566f04366f24cbc485
MD5 00fb54b3c0ddb345e8da36232b32ff7a
BLAKE2b-256 d07fb594a7fcadf455cfd4738a784dcab17f71f64fb14a95c27e9cad163ae204

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp39-none-win32.whl.

File metadata

  • Download URL: stam-0.10.1-cp39-none-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.7

File hashes

Hashes for stam-0.10.1-cp39-none-win32.whl
Algorithm Hash digest
SHA256 bdb817ac6d58a9d85c0f7b92c8112bd31c2a645990f0efd93abec950f213465d
MD5 c9797ba5d1ed2fa3516b948a66692f18
BLAKE2b-256 bc7fed45f7e931b12e8e286700cb392fada21a2ff785ee589422fad758c57428

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 7bebf5d0e6e2c4a5ced4ff15dbff98d89446fcd15c7b5378c9037b161779994d
MD5 88a2818a5cc0b5281944c336734cd5ef
BLAKE2b-256 73b049659ad069e50cac12fe498ff4b1cfe18f798a53ad3187d53fa2b4b100cb

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 b42e43e13879ddf083ba31ce7debd0cfb7896ba522c54ccd74ccc0c55b9d4465
MD5 0f63d27b1b5f33b25b40919df512b109
BLAKE2b-256 9695f91e0ff9a9aadf62aba402c3fc444d55d70630342563da6011238fb93bf6

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cf0f676860d6bbe9341417563613139eb9c9c786b79517a35e314cda07c53694
MD5 73626bcc5724cde2a3a672d468ce557d
BLAKE2b-256 36e539bd42ad04301066e4ac79c19e52473d6766a72528fd1db301e6a36c9a6b

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 73a80ae70eb0cc61075e566cfcb120d94510606a818c386638ac7919c38e61be
MD5 2e87c6cab1399b67bea53b8fd130aea0
BLAKE2b-256 1ab12b051c2923d77cedebf887201b7494c7645a844d5f57b046859534a54564

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 45edae852df55d3c631e44f2065ea0022399a0c361d2128fdc09450f7d83bbd2
MD5 3b822aacc403c36d7311f09767154d7f
BLAKE2b-256 a3faadb6033d5edb19c07616be1a55142aea5454d6fc19022f4a191ca68202f8

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 0c05ffebafaad802af37405cc0c399f145a7d89705e7da503a35aa7febae3602
MD5 40770b1b240bc6544bdbcf16c520acc9
BLAKE2b-256 fe70d7439df4b7b7f2646f0287e69f00e578068af8735451ba58bfe97d003b4f

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp38-none-win_amd64.whl.

File metadata

  • Download URL: stam-0.10.1-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.7

File hashes

Hashes for stam-0.10.1-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 6ffe8bde4f030f5228d45df633656a8cc2878f5cd7c4690a02c218d76dd9f6fd
MD5 0b8152fad92dc69a338da082f7f75c59
BLAKE2b-256 23f03e263c79de142378270ba3e57115edfcf516b4462a47a0034420fceb645f

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp38-none-win32.whl.

File metadata

  • Download URL: stam-0.10.1-cp38-none-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.7

File hashes

Hashes for stam-0.10.1-cp38-none-win32.whl
Algorithm Hash digest
SHA256 b8119c4981c1667975ccaf6c1e811198f959f5c78afc6c26784ea871943b9b82
MD5 fd62473d522af37c913903c23cac3fb0
BLAKE2b-256 2cee00f8183477d87deefb1277abba6eebee96d314e8069c35d31365a87f4b4d

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a97e1d9519f2730944caa02471469995d5c4f907a66c83ae1a117a296db60fef
MD5 0360c838e2b80917f21498876584ac25
BLAKE2b-256 62d1987b9ebaa05961e8ebf850c36ea89120b6e9ba5d2e9f7608432580a34bba

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 4e28500d5e084ebd3932a7a03b17beefea34de98eae291fd4474aa8f0aa8839c
MD5 697b55d255ea305fbb3adfc0c45b8ea4
BLAKE2b-256 4d5728c7519d1806640a719c2e731eb6db4995677346ef15a7ce63f8ef9e8447

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 53cd08441eff768529df6c5ba0b31bc5764d78e2200e509d307e1195a4afcdc9
MD5 84b0c8ff6929dff6ef7835a35564a439
BLAKE2b-256 df01f8ff1e70062658aa46ff8117676803a61c4a1be6b39359e377ae87cded84

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3df306c7e341927ced08f414a15c01afc05704cbaebfc3167ec12a5664a83ff8
MD5 21d9561f976882f2b7cb9d39195ca494
BLAKE2b-256 4526179812a0df222d20e355d1f7a22dc4c715562f66dd74e9a50d59ffea77c8

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6ce69372d5c2fe973baaccf747e3cf893d840ce7fd68dbd1b2c1e534b242a561
MD5 04d6404188627354787426ce0ca29bcd
BLAKE2b-256 264836787728e9ad3d7c5e91598ea1ae4f0f67cac513d1676e56155e3d654df4

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 1862d39bf2458a474eb15084e621c56e3b0ed4847940ddd686ed724069f2fd2e
MD5 13337aa29253282078e6391907ac288f
BLAKE2b-256 67f7bd0e4b032721f8adbfc42473103511705d156a2b3049332c237c7735616a

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp37-none-win_amd64.whl.

File metadata

  • Download URL: stam-0.10.1-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.7

File hashes

Hashes for stam-0.10.1-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 a401cad02cf64899f66d0743c059b80e3821f115a4d75abb8fc4ac76aff18a56
MD5 3f9b8b947ccb255dc55527931f2256d1
BLAKE2b-256 37317dcf1f162cee7a1f047fe5edac9e7b2164e5fa631d87432a7a13fd459b6f

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp37-none-win32.whl.

File metadata

  • Download URL: stam-0.10.1-cp37-none-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.7

File hashes

Hashes for stam-0.10.1-cp37-none-win32.whl
Algorithm Hash digest
SHA256 6d59176ffec49c323b0e039c2f2b8ea07ff0d66d83771d06cd5190fa132d1f5c
MD5 5652c894a515e7753f7db6a18e21d4be
BLAKE2b-256 1789b608fb2fc36221ddb8b7eb8faf57cea9103df47daa324811c049b998bbfe

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 2f1c270ad4805800239e5a3d295d52847bbf9fbcc33e3eee8ba7463165e9a1be
MD5 b31b991178ee8106b91d21755f4231ab
BLAKE2b-256 f7c87b850917cb12030f82c4aebdfd6e11cd2d40199c8aa6fcc39a7eee5813e1

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp37-cp37m-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp37-cp37m-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 721539ad91c41f6f4fc00955375a3aa0709db9bb41525fb64c7a64e83b358dfa
MD5 0026d189982792589c6a1b9934c455ce
BLAKE2b-256 99503043c9d7327ae16722c5b5fd7ce33a99430f6181521e02b2413bbc683a25

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 63989081b8d606094d2c1daac41351d2385c319c55e3d9ac5299e65852a74695
MD5 f499f52d3ad0e5be08b1853a5a18031e
BLAKE2b-256 b841346c1d523c75f9f4e80f660f00caab1bda6278d5258c696e158a0472679f

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 eba0dea2b43d08d89e547d20349a9a6002208da4d30e979fe97a3c74904b8555
MD5 af0e91a77151dde19372d652a33fc38f
BLAKE2b-256 89c41f5b126f80d12e69baf66260c7bad3e35d6f96c09725d47cde4ace23766a

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp37-cp37m-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp37-cp37m-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d936f63b8e11163de5c8021421530aa2344c97665b8e508c4c9864566c942012
MD5 76e28d1d9f967ed898f493b027447d6f
BLAKE2b-256 4508f5f39eec1b76a5abab54e54c39c4d1926e946f84f04cf75d5a48b1f6cc8f

See more details on using hashes here.

File details

Details for the file stam-0.10.1-cp37-cp37m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.1-cp37-cp37m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 832993f56ca3697bae1cc9ff9429d833a15de78246ffd7a404593f711eda9ada
MD5 8c7cebb1a0d1d980e2ffe14bdfdda163
BLAKE2b-256 5a6ef583797ca44457083503feec25567dec47ff85290bd5af4770b242500a34

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page