Skip to main content

Filecache for stan models

Project description

[![Build Status](https://travis-ci.org/hammerlab/stancache.svg?branch=master)](https://travis-ci.org/hammerlab/stancache)
[![Coverage Status](https://img.shields.io/coveralls/hammerlab/stancache.svg)](https://coveralls.io/github/hammerlab/stancache?branch=master)
[![PyPI version](https://img.shields.io/pypi/v/stancache.svg)](https://pypi.python.org/pypi/stancache)

stancache
===============================

author: Jacqueline Buros Novik

Overview
--------

Filecache for stan models

Installation
--------------------

You can install this package from pypi using pip:

$ pip install stancache

Or clone the repo & run setup.py:

$ git clone https://github.com/hammerlab/stancache.git
$ python setup.py install

Introduction
------------

This is a filecache for [pystan](https://pystan.readthedocs.io/en/latest/) models fit to data. Each pystan model fit to data is comprised of two parts - the compiled model code & the result of MCMC sampling of that model given data. Both model compilation & model sampling can be time-consuming operations, so both are cached as separate [pickled](https://docs.python.org/3/library/pickle.html) objects on the filesystem.

This separation allows one to (for example) compile a model once & execute the model several times - caching the result each time. You might be testing the model on different samples of data, or using different initializations or passing in different parameters.

Loading pickled pystan.fit objects into memory is also safer using `cached_stan_fit()` since this will ensure that the compiled model is first unpickled before the fit model.

Getting started
---------------

### Configuration

The configuration uses python's [configparser](https://docs.python.org/2/library/configparser.html) module, allowing the user to either load a `config.ini` file from disk or set the configuration in code.

`stancache` looks for a default config file to be located in `'~/.stancache.ini'`. You can modify this using `stancache.config.load_config('/another/config/file.ini')`.

Currently, the config settings include

* `CACHE_DIR` (defaults to `.cached_models`)
* `SEED` (seed value passed to `pystan.stan` for reproducible research)
* `SET_SEED` (boolean, whether to set the random.seed systemwide in addition to stan_seed)

You can use `config.set_value(NAME=value)` to modify a setting.

For example, you might want to set up a shared-nfs-mount containing fitted models among your collaborators:

```python
from stancache import config
config.set_value(CACHE_DIR='/mnt/trial-analyses/cohort1/stancache')
```

An updated list of configuration defaults is available in [defaults.py](https://github.com/hammerlab/stancache/blob/master/stancache/defaults.py)

### Fitting cached models

Once you have configured your settings, you would then use `stancache.cached_stan_fit` to fit your model, like so:

```python
from stancache import stancache
fit1 = stancache.cached_stan_fit(file = '/path/to/model.stan', data=dict(), chains=4, iter=100)
```

The options to `cached_stan_fit` are the same as those to `pystan.stan` (see [pystan.stan documentation](https://pystan.readthedocs.io/en/latest/api.html#pystan.stan)).

Also see `?stancache.cached_stan_fit` for more details.

### Caching other items

The caching is very sensitive to certain things which would change the returned object, such as the sort order of your data elements within the dictionary. But is not sensitive to other things, such as whether you use a file-based stan code or string-based version of same code.

In practice, we find that it can be helpful to cache data-preparation steps, especially when simulating data. There is thus a `stancache.cached()` wrapper function for this purpose,. This will save or cache all objects _other_ than `pystan.stan` objects to disk using the same file-cache settings as are used for stancache.

### Avoiding re-executing a model

There are a number of scenarios where you might want to use a cache of fitted models in read-only mode. You can avoid accidentally re-fitting the model by setting `cache_only=True`.

For example, you may have fit a set of models which you want to read into a jupyter notebook for model exploration. Or, you may be reviewing a colleague's fitted model objects. Note that this is foolproof so please back up your work.

Contributing
------------

TBD

Examples
--------

For example (borrowing from [pystan's docs](https://pystan.readthedocs.io/en/latest/getting_started.html)):

```python
import stancache

schools_code = """
data {
int<lower=0> J; // number of schools
real y[J]; // estimated treatment effects
real<lower=0> sigma[J]; // s.e. of effect estimates
}
parameters {
real mu;
real<lower=0> tau;
real eta[J];
}
transformed parameters {
real theta[J];
for (j in 1:J)
theta[j] <- mu + tau * eta[j];
}
model {
eta ~ normal(0, 1);
y ~ normal(theta, sigma);
}
"""

schools_dat = {'J': 8,
'y': [28, 8, -3, 7, -1, 1, 18, 12],
'sigma': [15, 10, 16, 11, 9, 11, 10, 18]}

# fit model to data
fit = stancache.cached_stan_fit(model_code=schools_code, data=schools_dat,
iter=1000, chains=4)

# load fit model from cache
fit2 = stancache.cached_stan_fit(model_code=schools_code, data=schools_dat,
iter=1000, chains=4)
```

In addition, there are a number of publicly-accessible ipynbs using [stancache](http://github.com/hammerlab/stancache).

These include:

* [survivalstan-examples](http://github.com/jburos/survivalstan-examples)
* [immune-infiltrate-explorations](http://github.com/hammerlab/immune-infiltrate-explorations)
- e.g. [model-single-origin-samples/0.830 model3 by cell_type (n=500).ipynb](http://nbviewer.jupyter.org/github/hammerlab/immune-infiltrate-explorations/blob/master/model-single-origin-samples/0.830%20model3%20by%20cell_type%20%28n%3D500%29.ipynb)

If you know of other examples, please let us know and we will add them to this list.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stancache-0.1.64.tar.gz (28.4 kB view details)

Uploaded Source

File details

Details for the file stancache-0.1.64.tar.gz.

File metadata

  • Download URL: stancache-0.1.64.tar.gz
  • Upload date:
  • Size: 28.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.29.1 CPython/2.7.15

File hashes

Hashes for stancache-0.1.64.tar.gz
Algorithm Hash digest
SHA256 74261b8d7e078707c92996668dea40c2ff5854814fd393dc22c09218914cb699
MD5 3e3e74911f432077280d2ebc79337d22
BLAKE2b-256 cf38d018944f56d7385490cf815bfb2420d36fc9f2707eea2c14cde4d8e04a17

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page