Skip to main content

A Python package to generate an astronomy star chart based on spherical projection that corrects for distortions to generate star charts with spherical projection

Project description


PyPi license

A Python package to generate an astronomy star chart based on spherical projection with +90/-90° in the center (orignally based on this Astrolabe work) based on a star's position (declination and right ascension): past, present, and future (proper motion and *precession)

The first step to plot the celestial sphere onto a 2D plot is to map the star's right ascension as hours along the plot (polar plot's theta value) and declination as the distance from the center of the circle (polar plot's radius value). However, attempting to map the right ascension and declination directly will cause a distinct amount of distortion since the angles between the stars along the declination are no longer conserved. On the left, the constellation of the Big Dipper is stretched into an unfamiliar shape. By accounting for the spherical transformation, the star chart can be corrected as seen on the right.

Without Correction With Correction
without_correction with_correction

Example outputs:

Star Chart in the Northern Hemisphere (centered on 90°) north_star_chart_without_precession_without_labels+png Star Chart in the Southern Hemisphere (centered on -90°) south_star_chart_without_precession_without_labels+png *precession to be added


From the perspective of an observer on the Earth's surface, the stars apprar to sit along the surface of the celestial sphere--an imaginary sphere of arbitery radius with the Earth at its center. All objects in the sky will appear projected on the celestial sphere regardless of their true distance from Earth. Each star's position is given by two values. Declination is the angular distance from the celestial equator and right ascension is the distance from the position of the vernal equinox. The stars will appear to rotate across the sky as a result of the Earth's rotation, but their position is fixed. A star’s actual position does change over time as the combined result of the star’s small movement (proper motion) as well as the changing rotational axis of the Earth (precession).

Spherical projection can overcome this difficulty by converting the position of the declination to:

# Projected from South Pole (Northern Hemisphere)
north_hemisphere_declination = tan(45° + (original_declination / 2))

# Projected from North Pole (Southern Hemisphere)
south_hemisphere_declination = tan(45° - (original_declination / 2))

Where in the Northern Hemsiphere, projections are formed from the South Pole: morrisons_astrolabe


Python 3.7

pip3 install -r requirements.txt


PyPi pip install at

pip install star-chart-spherical-projection



import star_chart_spherical_projection
star_chart_spherical_projection.plotStarChart(northOrSouth="North", star_plot_color="red")



Add README badges: tests

TODO: check that user list has stars that are found in current list

Update pypi development status

Update tarball download_url via VERSION tag

Move constants to instead of

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page