Skip to main content

Python client for HBase Stargate REST server

Project description

HBase Stargate (REST API) client wrapper for Python.

Read the official documentation of Stargate (


starbase is (at the moment) a client implementation of the Apache HBase REST API (Stargate).

What you have to know

Beware, that REST API is slow (not to blame on this library!). If you can operate with HBase directly better do so.


You need to have Hadoop, HBase, Thrift and Stargate running. If you want to make it easy for yourself, read my instructions on installing Cloudera manager (free) on Ubuntu 12.04 LTS here ( or (

Once you have everything installed and running (by default Stargate runs on, you should be able to run src/starbase/client/ without problems (UnitTest).

Supported Python versions

  • 2.6.8 and up
  • 2.7
  • 3.3


Project is still in development, thus not all the features of the API are available.

Features implemented

  • Connect to Stargate.
  • Show software version.
  • Show cluster version.
  • Show cluster status.
  • List tables.
  • Retrieve table schema.
  • Retrieve table meta data.
  • Get a list of tables’ column families.
  • Create a table.
  • Delete a table.
  • Alter table schema.
  • Insert (PUT) data into a single row (single or multiple columns).
  • Update (POST) data of a single row (single or multiple columns).
  • Select (GET) a single row from table, optionally with selected columns only.
  • Delete (DELETE) a single row by id.
  • Batch insert (PUT).
  • Batch update (POST).
  • Basic HTTP auth is working. You could provide a login and a password to the connection.
  • Retrive all rows in a table (table scanning).

Features in-development

  • Table scanning.
  • Syntax globbing.


Install latest stable version from PyPI.

$ pip install starbase

Or latest stable version from github.

$ pip install -e git+

Usage and examples

Operating with API starts with making a connection instance.

Required imports

>>> from starbase import Connection

Create a connection instance

Defaults to Specify host and port arguments when creating a connection instance, if your settings are different.

>>> c = Connection()

With customisations, would look simlar to the following.

>>> c = Connection(host='', port=8001)

Show tables

Assuming that there are two existing tables named table1 and table2, the following would be printed out.

>>> c.tables()
['table1', 'table2']

Operating with table schema

Whenever you need to operate with a table (also, if you need to create one), you need to have a table instance created.

Create a table instance (note, that at this step no table is created).

>>> t = c.table('table3')

Create a new table

Assuming that no table named table3 yet exists in the database, create a table named table3 with columns (column families) column1, column2, column3 (this is the point where the table is actually created). In the example below, column1, column2 and column3 are column families (in short - columns). Columns are declared in the table schema.

>>> t.create('column1', 'column2', 'column3')

Check if table exists

>>> t.exists()

Show table columns (column families)

>>> t.columns()
['column1', 'column2', 'column3']

Add columns to the table

Add columns given (column4, column5, column6, column7).

>>> t.add_columns('column4', 'column5', 'column6', 'column7')

Drop columns from table

Drop columns given (column6, column7).

>>> t.drop_columns('column6', 'column7')

Drop entire table schema

>>> t.drop()

Operating with table data

Insert data into a single row

HBase is a key/value store. In HBase columns (also named column families) are part of declared table schema and have to be defined when a table is created. Columns have qualifiers, which are not declared in the table schema. Number of column qualifiers is not limited.

Within a single row, a value is mapped by a column family and a qualifier (in terms of key/value store concept). Value might be anything castable to string (JSON objects, data structures, XML, etc).

In the example below, key11, key12, key21, etc. - are the qualifiers. Obviously, column1, column2 and column3 are column families.

Column families must be composed of printable characters. Qualifiers can be made of any arbitrary bytes.

Table rows are identified by row keys - unique identifiers (UID or so called primary key). In the example below, my-key-1 is the row key (UID).

То recap all what’s said above, HBase maps (row key, column family, column qualifier and timestamp) to a value.

>>> t.insert(
>>>     'my-key-1',
>>>     {
>>>         'column1': {'key11': 'value 11', 'key12': 'value 12',
>>>                     'key13': 'value 13'},
>>>         'column2': {'key21': 'value 21', 'key22': 'value 22'},
>>>         'column3': {'key32': 'value 31', 'key32': 'value 32'}
>>>     }
>>> )

Note, that you may also use the native way of naming the columns and cells (qualifiers). Result of the following would be equal to the result of the previous example.

>>> t.insert(
>>>     'my-key-1',
>>>     {
>>>         'column1:key11': 'value 11', 'column1:key12': 'value 12',
>>>         'column1:key13': 'value 13',
>>>         'column2:key21': 'value 21', 'column2:key22': 'value 22',
>>>         'column3:key32': 'value 31', 'column3:key32': 'value 32'
>>>     }
>>> )

Update row data

>>> t.update(
>>>     'my-key-1',
>>>     {'column4': {'key41': 'value 41', 'key42': 'value 42'}}
>>> )

Remove row, row column or row cell data

Remove a row cell (qualifier) data. In the example below, the my-key-1 is table row UID, column4 is the column family and the key41 is the qualifier. Note, that only qualifer data (for the row given) is being removed. All other possible qualifiers of the column column4 will remain untouched.

>>> t.remove('my-key-1', 'column4', 'key41')

Remove a row column (column family) data. Note, that at this point, the entire column data (data of all qualifiers for the row given) is being removed.

>>> t.remove('my-key-1', 'column4')

Remove an entire row data. Note, that in this case, entire row data, along with all columns and qualifiers for the row given, is being removed.

>>> t.remove('my-key-1')

Fetch table data

Fetch a single row data with all columns and qualifiers.

>>> t.fetch('my-key-1')
    'column1': {'key11': 'value 11', 'key12': 'value 12', 'key13': 'value 13'},
    'column2': {'key21': 'value 21', 'key22': 'value 22'},
    'column3': {'key32': 'value 31', 'key32': 'value 32'}

Fetch a single row data with selected columns (limit to column1 and column2 columns and all their qualifiers).

>>> t.fetch('my-key-1', ['column1', 'column2'])
    'column1': {'key11': 'value 11', 'key12': 'value 12', 'key13': 'value 13'},
    'column2': {'key21': 'value 21', 'key22': 'value 22'},

Narrow the result set even more (limit to qualifiers key1 and key2 of column column1 and qualifier key32 of column column3).

>>> t.fetch('my-key-1', {'column1': ['key11', 'key13'], 'column3': ['key32']})
    'column1': {'key11': 'value 11', 'key13': 'value 13'},
    'column3': {'key32': 'value 32'}

Note, that you may also use the native way of naming the columns and cells (qualifiers). Example below does exactly the same as example above.

>>>  t.fetch('my-key-1', ['column1:key11', 'column1:key13', 'column3:key32'])
    'column1': {'key11': 'value 11', 'key13': 'value 13'},
    'column3': {'key32': 'value 32'}

If you set the perfect_dict argument to False, you’ll get the native data structure.

>>>  t.fetch('my-key-1', ['column1:key11', 'column1:key13', 'column3:key32'],
>>>           perfect_dict=False)
    'column1:key11': 'value 11', 'column1:key13': 'value 13',
    'column3:key32': 'value 32'

Batch operations with table data

Batch operations (insert and update) work similar to normal insert and update, but are done in a batch. You are advised to operate in batch as much as possible.

Batch insert

In the example below, we will insert 5000 records in a batch.

>>> data = {
>>>     'column1': {'key11': 'value 11', 'key12': 'value 12', 'key13': 'value 13'},
>>>     'column2': {'key21': 'value 21', 'key22': 'value 22'},
>>> }
>>> b = t.batch()
>>> if b:
>>>     for i in range(0, 5000):
>>>         b.insert('my-key-%s' % i, data)
>>>     b.commit(finalize=True)
{'method': 'PUT', 'response': [200], 'url': 'table3/bXkta2V5LTA='}

Batch update

In the example below, we will update 5000 records in a batch.

>>> data = {
>>>     'column3': {'key31': 'value 31', 'key32': 'value 32'},
>>> }
>>> b = t.batch()
>>> if b:
>>>     for i in range(0, 5000):
>>>         b.update('my-key-%s' % i, data)
>>>     b.commit(finalize=True)
{'method': 'POST', 'response': [200], 'url': 'table3/bXkta2V5LTA='}

Note: The table batch method accepts an optional size argument (int). If set, an auto-commit is fired each the time the stack is full.

Table data search (row scanning)

Table scanning is in development (therefore, the scanning API will likely be changed). Result set returned is a generator.

Fetch all rows

>>> t.fetch_all_rows()
<generator object results at 0x28e9190>

Fetch rows with a filter given

>>> rf = '{"type": "RowFilter", "op": "EQUAL", "comparator": {"type": "RegexStringComparator", "value": "^row_1.+"}}'
>>> t.fetch_all_rows(with_row_id=True, filter_string=rf)
<generator object results at 0x28e9190>

More information on table operations

By default, prior further execution of the fetch, insert, update, remove (table row operations) methods, it’s being checked whether the table exists or not. That’s safe, but comes in cost of an extra (light though) HTTP request. If you’re absolutely sure you want to avoid those checks, you can disable them. It’s possible to disable each type of row operation, by setting the following properties of the table instance to False: check_if_exists_on_row_fetch, check_if_exists_on_row_insert, check_if_exists_on_row_remove and check_if_exists_on_row_update. It’s also possible to disable them all at once, by calling the disable_row_operation_if_exists_checks method of the table instance.

Same goes for table scanner operations. Setting the value of check_if_exists_on_scanner_operations of a table instance to False, skips the checks for scanner operations.

Exception handling

Methods that accept fail_silently argument are listed per class below.


  • version
  • cluster_version
  • cluster_status
  • tables
  • table_exists
  • drop_table


  • batch
  • create
  • drop
  • exists
  • fetch
  • fetch_all_rows
  • insert
  • regions
  • remove
  • schema
  • update


  • insert
  • update
  • commit


Class starbase.client.table.Batch accepts fail_silently as a constructor argument.

More examples

Show software version

>>> print connection.version
{u'JVM': u'Sun Microsystems Inc. 1.6.0_43-20.14-b01',
 u'Jersey': u'1.8',
 u'OS': u'Linux 3.5.0-30-generic amd64',
 u'REST': u'0.0.2',
 u'Server': u'jetty/6.1.26'}

Show cluster version

>>> print connection.cluster_version

Show cluster status

>>> print connection.cluster_status
{u'DeadNodes': [],
 u'LiveNodes': [{u'Region': [{u'currentCompactedKVs': 0,
 u'regions': 3,
 u'requests': 0}

Show table schema

>>> print table.schema()
{u'ColumnSchema': [{u'BLOCKCACHE': u'true',
   u'BLOCKSIZE': u'65536',
   u'IS_ROOT': u'false',
 u'name': u'messages'}


GPL 2.0/LGPL 2.1


For any issues contact me at the e-mail given in the Author section.


Artur Barseghyan <>

Project details

Release history Release notifications

History Node


History Node


History Node


This version
History Node


History Node


History Node


History Node


History Node


History Node


History Node


History Node


History Node


History Node


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
starbase-0.3.tar.gz (53.3 kB) Copy SHA256 hash SHA256 Source None Mar 10, 2014

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page