Skip to main content

StarGAN in PyTorch.

Project description

StarGAN-PyTorch

Contents

Introduction

This repository contains an op-for-op PyTorch reimplementation of StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation.

Getting Started

Requirements

  • Python 3.10+
  • PyTorch 2.1.0+
  • CUDA 11.8+
  • Ubuntu 22.04+

From PyPI

pip install stargan_pytorch -i https://pypi.org/simple

Local Install

git clone https://github.com/Lornatang/StarGAN-PyTorch.git
cd StarGAN-PyTorch
pip install -r requirements.txt
pip install -e .

All pretrained model weights

Test (e.g. CelebA-128x128)

# Download g_celeba128 model weights to `./results/pretrained_models`
wget https://huggingface.co/goodfellowliu/StarGAN-PyTorch/resolve/main/g_celeba128.pth.tar?download=true -O ./results/pretrained_models/g_celeba128.pth.tar
python ./tools/test.py ./configs/CelebA128.yaml
# Result will be saved to `./results/test/celeba128`

Train

Please refer to README.md in the data directory for the method of making a dataset.

# If you want to train StarGAN-CelebA-128x128, run this command
python3 ./tools/train.py ./configs/CelebA128.yaml
# If you want to train StarGAN-CelebA-256x256, run this command
python3 ./tools/train.py ./configs/CelebA256.yaml

The training results will be saved to ./results/train/celeba128 or ./results/train/celeba256.

Contributing

If you find a bug, create a GitHub issue, or even better, submit a pull request. Similarly, if you have questions, simply post them as GitHub issues.

I look forward to seeing what the community does with these models!

Credit

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, Jaegul Choo

Abstract
Recent studies have shown remarkable success in imageto-image translation for two domains. However, existing approaches have limited scalability and robustness in handling more than two domains, since different models should be built independently for every pair of image domains. To address this limitation, we propose StarGAN, a novel and scalable approach that can perform image-to-image translations for multiple domains using only a single model. Such a unified model architecture of StarGAN allows simultaneous training of multiple datasets with different domains within a single network. This leads to StarGAN’s superior quality of translated images compared to existing models as well as the novel capability of flexibly translating an input image to any desired target domain. We empirically demonstrate the effectiveness of our approach on a facial attribute transfer and a facial expression synthesis tasks.

[Paper] [Code(PyTorch)]

@misc{choi2018stargan,
      title={StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation}, 
      author={Yunjey Choi and Minje Choi and Munyoung Kim and Jung-Woo Ha and Sunghun Kim and Jaegul Choo},
      year={2018},
      eprint={1711.09020},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stargan_pytorch-0.1.0.tar.gz (8.1 kB view details)

Uploaded Source

Built Distribution

stargan_pytorch-0.1.0-py3-none-any.whl (7.1 kB view details)

Uploaded Python 3

File details

Details for the file stargan_pytorch-0.1.0.tar.gz.

File metadata

  • Download URL: stargan_pytorch-0.1.0.tar.gz
  • Upload date:
  • Size: 8.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for stargan_pytorch-0.1.0.tar.gz
Algorithm Hash digest
SHA256 e60b20f28c695e1c8aadf3d1c8d29c593a31558853ae6514c3c568d7447842f9
MD5 50b3f19fe6febb2fd1e62a5321b7aa18
BLAKE2b-256 f9786b2cc407d1c1c45ad0e4c8f7576cfc65f962993e3d1a5ded453b5c4b1caf

See more details on using hashes here.

File details

Details for the file stargan_pytorch-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for stargan_pytorch-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 7654100932a3c8cd4e4cf3e252c065c63c07c0070e443e1bbeb243492d27c812
MD5 2c494760601e676f58beceffb3c18df4
BLAKE2b-256 c2212c018237fc9af8e9a78692b9eba79296c435cbdccd6192156bbffd1da68f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page