A lightweight and fast pure python ECDSA library
Project description
A lightweight and fast pure Python ECDSA
Overview
We tried other Python libraries such as python-ecdsa, fast-ecdsa and other less famous ones, but we didn't find anything that suited our needs. The first one was pure Python, but it was too slow. The second one mixed Python and C and it was really fast, but we were unable to use it in our current infrastructure, which required pure Python code.
For this reason, we decided to create something simple, compatible with OpenSSL and fast using elegant math such as Jacobian Coordinates to speed up the ECDSA. Starkbank-ECDSA is fully compatible with Python2 and Python3.
Installation
To install StarkBank`s ECDSA-Python, run:
pip install starkbank-ecdsa
Curves
We currently support secp256k1
, but you can add more curves to the project. You just need to use the curve.add() function.
Speed
We ran a test on a MAC Pro i7 2017. The libraries were run 100 times and the averages displayed bellow were obtained:
Library | sign | verify |
---|---|---|
python-ecdsa | 121.3ms | 65.1ms |
fast-ecdsa | 0.1ms | 0.2ms |
starkbank-ecdsa | 4.1ms | 7.8ms |
Our pure Python code cannot compete with C based libraries, but it's 6x faster
to verify and 23x faster
to sign than other pure Python libraries.
Sample Code
How to sign a json message for Stark Bank:
from json import dumps
from ellipticcurve.ecdsa import Ecdsa
from ellipticcurve.privateKey import PrivateKey
# Generate privateKey from PEM string
privateKey = PrivateKey.fromPem("""
-----BEGIN EC PARAMETERS-----
BgUrgQQACg==
-----END EC PARAMETERS-----
-----BEGIN EC PRIVATE KEY-----
MHQCAQEEIODvZuS34wFbt0X53+P5EnSj6tMjfVK01dD1dgDH02RzoAcGBSuBBAAK
oUQDQgAE/nvHu/SQQaos9TUljQsUuKI15Zr5SabPrbwtbfT/408rkVVzq8vAisbB
RmpeRREXj5aog/Mq8RrdYy75W9q/Ig==
-----END EC PRIVATE KEY-----
""")
# Create message from json
message = dumps({
"transfers": [
{
"amount": 100000000,
"taxId": "594.739.480-42",
"name": "Daenerys Targaryen Stormborn",
"bankCode": "341",
"branchCode": "2201",
"accountNumber": "76543-8",
"tags": ["daenerys", "targaryen", "transfer-1-external-id"]
}
]
})
signature = Ecdsa.sign(message, privateKey)
# Generate Signature in base64. This result can be sent to Stark Bank in the request header as the Digital-Signature parameter.
print(signature.toBase64())
# To double check if the message matches the signature, do this:
publicKey = privateKey.publicKey()
print(Ecdsa.verify(message, signature, publicKey))
Simple use:
from ellipticcurve.ecdsa import Ecdsa
from ellipticcurve.privateKey import PrivateKey
# Generate new Keys
privateKey = PrivateKey()
publicKey = privateKey.publicKey()
message = "My test message"
# Generate Signature
signature = Ecdsa.sign(message, privateKey)
# To verify if the signature is valid
print(Ecdsa.verify(message, signature, publicKey))
How to add more curves:
from ellipticcurve import curve, PrivateKey, PublicKey
newCurve = curve.CurveFp(
name="frp256v1",
A=0xf1fd178c0b3ad58f10126de8ce42435b3961adbcabc8ca6de8fcf353d86e9c00,
B=0xee353fca5428a9300d4aba754a44c00fdfec0c9ae4b1a1803075ed967b7bb73f,
P=0xf1fd178c0b3ad58f10126de8ce42435b3961adbcabc8ca6de8fcf353d86e9c03,
N=0xf1fd178c0b3ad58f10126de8ce42435b53dc67e140d2bf941ffdd459c6d655e1,
Gx=0xb6b3d4c356c139eb31183d4749d423958c27d2dcaf98b70164c97a2dd98f5cff,
Gy=0x6142e0f7c8b204911f9271f0f3ecef8c2701c307e8e4c9e183115a1554062cfb,
oid=[1, 2, 250, 1, 223, 101, 256, 1]
)
curve.add(newCurve)
publicKeyPem = """-----BEGIN PUBLIC KEY-----
MFswFQYHKoZIzj0CAQYKKoF6AYFfZYIAAQNCAATeEFFYiQL+HmDYTf+QDmvQmWGD
dRJPqLj11do8okvkSxq2lwB6Ct4aITMlCyg3f1msafc/ROSN/Vgj69bDhZK6
-----END PUBLIC KEY-----"""
publicKey = PublicKey.fromPem(publicKeyPem)
print(publicKey.toPem())
OpenSSL
This library is compatible with OpenSSL, so you can use it to generate keys:
openssl ecparam -name secp256k1 -genkey -out privateKey.pem
openssl ec -in privateKey.pem -pubout -out publicKey.pem
Create a message.txt file and sign it:
openssl dgst -sha256 -sign privateKey.pem -out signatureDer.txt message.txt
To verify, do this:
from ellipticcurve.ecdsa import Ecdsa
from ellipticcurve.signature import Signature
from ellipticcurve.publicKey import PublicKey
from ellipticcurve.utils.file import File
publicKeyPem = File.read("publicKey.pem")
signatureDer = File.read("signatureDer.txt", "rb")
message = File.read("message.txt")
publicKey = PublicKey.fromPem(publicKeyPem)
signature = Signature.fromDer(signatureDer)
print(Ecdsa.verify(message, signature, publicKey))
You can also verify it on terminal:
openssl dgst -sha256 -verify publicKey.pem -signature signatureDer.txt message.txt
NOTE: If you want to create a Digital Signature to use with Stark Bank, you need to convert the binary signature to base64.
openssl base64 -in signatureDer.txt -out signatureBase64.txt
You can do the same with this library:
from ellipticcurve.signature import Signature
from ellipticcurve.utils.file import File
signatureDer = File.read("signatureDer.txt", "rb")
signature = Signature.fromDer(signatureDer)
print(signature.toBase64())
Run unit tests
python3 -m unittest discover
python2 -m unittest discover
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file starkbank-ecdsa-2.1.0.tar.gz
.
File metadata
- Download URL: starkbank-ecdsa-2.1.0.tar.gz
- Upload date:
- Size: 14.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.8.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 24422395e8682ac22a5b20ba3d7418d62e1a927aef29e8ddb5e678662be6b643 |
|
MD5 | 2dfa624dcdb191da1020e99df7e5a3bc |
|
BLAKE2b-256 | 2cdddee60bb29270b58b0b5e1dfd5677428aca1b2d8167061886b01971b9ea21 |