Starlake Python Distribution For Airflow
Project description
starlake-airflow
starlake-airflow is the Starlake Python Distribution for Airflow.
It is recommended to use it in combinaison with starlake dag generation, but can be used directly as is in your DAGs.
Prerequisites
Before installing starlake-airflow, ensure the following minimum versions are installed on your system:
- starlake: 1.0.0 or higher
- python: 3.8 or higher
- Apache Airflow: 2.4.0 or higher (2.6.0 or higher is recommanded with cloud-run)
Installation
pip install starlake-airflow --upgrade
StarlakeAirflowJob
ai.starlake.airflow.StarlakeAirflowJob
is an abstract factory class that extends the generic factory interface ai.starlake.job.IStarlakeJob
and is responsible for generating the Airflow tasks that will run the import, load and transform starlake commands.
sl_import
It generates the Airflow task that will run the starlake import command.
def sl_import(
self,
task_id: str,
domain: str,
**kwargs) -> BaseOperator:
#...
name | type | description |
---|---|---|
task_id | str | the optional task id ({domain}_import by default) |
domain | str | the required domain to import |
sl_load
It generates the Airflow task that will run the starlake load command.
def sl_load(
self,
task_id: str,
domain: str,
table: str,
spark_config: StarlakeSparkConfig=None,
**kwargs) -> BaseOperator:
#...
name | type | description |
---|---|---|
task_id | str | the optional task id ({domain}_{table}_load by default) |
domain | str | the required domain of the table to load |
table | str | the required table to load |
spark_config | StarlakeSparkConfig | the optional ai.starlake.job.StarlakeSparkConfig |
sl_transform
It generates the Airflow task that will run the starlake transform command.
def sl_transform(
self,
task_id: str,
transform_name: str,
transform_options: str=None,
spark_config: StarlakeSparkConfig=None, **kwargs) -> BaseOperator:
#...
name | type | description |
---|---|---|
task_id | str | the optional task id ({transform_name} by default) |
transform_name | str | the transform to run |
transform_options | str | the optional transform options |
spark_config | StarlakeSparkConfig | the optional ai.starlake.job.StarlakeSparkConfig |
sl_job
Ultimately, all of these methods will call the sl_job
method that needs to be implemented in all concrete factory classes.
def sl_job(
self,
task_id: str,
arguments: list,
spark_config: StarlakeSparkConfig=None,
**kwargs) -> BaseOperator:
#...
name | type | description |
---|---|---|
task_id | str | the required task id |
arguments | list | The required arguments of the starlake command to run |
spark_config | StarlakeSparkConfig | the optional ai.starlake.job.StarlakeSparkConfig |
Init
To initialize this class, you may specify the optional pre load strategy and options to use.
def __init__(self, pre_load_strategy: Union[StarlakePreLoadStrategy, str, None], options: dict=None, **kwargs) -> None:
"""Overrides IStarlakeJob.__init__()
Args:
pre_load_strategy (Union[StarlakePreLoadStrategy, str, None]): The pre-load strategy to use.
options (dict): The options to use.
"""
super().__init__(pre_load_strategy, options, **kwargs)
#...
StarlakePreLoadStrategy
ai.starlake.job.StarlakePreLoadStrategy
is an enum that defines the different pre load strategies that can be used to conditionaly load a domain.
The pre-load strategy is implemented by sl_pre_load
method that will generate the Airflow group of tasks corresponding to the choosen strategy.
def sl_pre_load(
self,
domain: str,
pre_load_strategy: Union[StarlakePreLoadStrategy, str, None]=None,
**kwargs) -> BaseOperator:
#...
name | type | description |
---|---|---|
domain | str | the domain to load |
pre_load_strategy | str | the optional pre load strategy (self.pre_load_strategy by default) |
NONE
The load of the domain will not be conditionned and no pre-load tasks will be executed.
IMPORTED
This strategy implies that at least one file is present in the landing area (SL_ROOT/importing/{domain}
by default, if option incoming_path
has not been specified). If there is one or more files to load, the method sl_import
will be called to import the domain before loading it, otherwise the loading of the domain will be skipped.
PENDING
This strategy implies that at least one file is present in the pending datasets area of the domain (SL_ROOT/datasets/pending/{domain}
by default if option pending_path
has not been specified), otherwise the loading of the domain will be skipped.
ACK
This strategy implies that an ack file is present at the specified path (option global_ack_file_path
), otherwise the loading of the domain will be skipped.
Options
The following options can be specified in all concrete factory classes:
name | type | description |
---|---|---|
default_pool | str | pool of slots to use (default_pool by default) |
sl_env_var | str | optional starlake environment variables passed as an encoded json string |
pre_load_strategy | str | one of none (default), imported , pending or ack |
incoming_path | str | path to the landing area for the domain to load ({SL_ROOT}/incoming by default) |
pending_path | str | path to the pending datastets for the domain to load ({SL_DATASETS}/pending by default) |
global_ack_file_path | str | path to the ack file ({SL_DATASETS}/pending/{domain}/{{{{ds}}}}.ack by default) |
ack_wait_timeout | int | timeout in seconds to wait for the ack file(1 hour by default) |
Data-aware scheduling
The ai.starlake.airflow.StarlakeAirflowJob
class is also responsible for recording the outlets
related to the execution of each starlake command, usefull for scheduling DAGs using data-aware scheduling.
All the outlets that have been recorded are available in the outlets
property of the instance of the concrete class.
def __init__(
self,
pre_load_strategy: Union[StarlakePreLoadStrategy, str, None],
options: dict=None,
**kwargs) -> None:
#...
self.outlets: List[Dataset] = kwargs.get('outlets', [])
def sl_import(self, task_id: str, domain: str, **kwargs) -> BaseOperator:
#...
dataset = Dataset(keep_ascii_only(domain).lower())
self.outlets += kwargs.get('outlets', []) + [dataset]
#...
def sl_load(
self,
task_id: str,
domain: str,
table: str,
spark_config: StarlakeSparkConfig=None,
**kwargs) -> BaseOperator:
#...
dataset = Dataset(keep_ascii_only(f'{domain}.{table}').lower())
self.outlets += kwargs.get('outlets', []) + [dataset]
#...
def sl_transform(
self,
task_id: str,
transform_name: str,
transform_options: str=None,
spark_config: StarlakeSparkConfig=None,
**kwargs) -> BaseOperator:
#...
dataset = Dataset(keep_ascii_only(transform_name).lower())
self.outlets += kwargs.get('outlets', []) + [dataset]
#...
In conjonction with the starlake dag generation, the outlets
property can be used to schedule effortless DAGs that will run the transform commands.
On premise
StarlakeAirflowBashJob
This class is a concrete implementation of StarlakeAirflowJob
that generates tasks using airflow.operators.bash.BashOperator
. Usefull for on premise execution.
An additional SL_STARLAKE_PATH
option is required to specify the path to the starlake
executable.
StarlakeAirflowBashJob load Example
The following example shows how to use StarlakeAirflowBashJob
to generate dynamically DAGs that load domains using starlake
and record corresponding outlets
.
description="""example to load domain(s) using airflow starlake bash job"""
options = {
# General options
'sl_env_var':'{"SL_ROOT": "/starlake/samples/starbake"}',
'pre_load_strategy':'imported',
# Bash options
'SL_STARLAKE_PATH':'/starlake/starlake.sh',
}
from ai.starlake.airflow.bash import StarlakeAirflowBashJob
sl_job = StarlakeAirflowBashJob(options=options)
schedules= [{
'schedule': 'None',
'cron': None,
'domains': [{
'name':'starbake',
'final_name':'starbake',
'tables': [
{
'name': 'Customers',
'final_name': 'Customers'
},
{
'name': 'Ingredients',
'final_name': 'Ingredients'
},
{
'name': 'Orders',
'final_name': 'Orders'
},
{
'name': 'Products',
'final_name': 'Products'
}
]
}]
}]
def generate_dag_name(schedule):
dag_name = os.path.basename(__file__).replace(".py", "").replace(".pyc", "").lower()
return (f"{dag_name}-{schedule['schedule']}" if len(schedules) > 1 else dag_name)
from ai.starlake.common import keep_ascii_only, sanitize_id
from ai.starlake.airflow import DEFAULT_DAG_ARGS
import os
from airflow import DAG
from airflow.datasets import Dataset
from airflow.utils.task_group import TaskGroup
# [START instantiate_dag]
for schedule in schedules:
for domain in schedule["domains"]:
tags.append(domain["name"])
with DAG(dag_id=generate_dag_name(schedule),
schedule_interval=schedule['cron'],
default_args=DEFAULT_DAG_ARGS,
catchup=False,
tags=set([tag.upper() for tag in tags]),
description=description) as dag:
start = sl_job.dummy_op(task_id="start")
post_tasks = sl_job.post_tasks()
pre_load_tasks = sl_job.sl_pre_load(domain=domain["name"])
def generate_task_group_for_domain(domain):
with TaskGroup(group_id=sanitize_id(f'{domain["name"]}_load_tasks')) as domain_load_tasks:
for table in domain["tables"]:
load_task_id = sanitize_id(f'{domain["name"]}_{table["name"]}_load')
sl_job.sl_load(
task_id=load_task_id,
domain=domain["name"],
table=table["name"]
)
return domain_load_tasks
all_load_tasks = [generate_task_group_for_domain(domain) for domain in schedule["domains"]]
if pre_load_tasks:
start >> pre_load_tasks >> all_load_tasks
else:
start >> all_load_tasks
all_done = sl_job.dummy_op(task_id="all_done", outlets=[Dataset(keep_ascii_only(dag.dag_id))]+sl_job.outlets)
if post_tasks:
all_load_tasks >> all_done >> post_tasks
else:
all_load_tasks >> all_done
StarlakeAirflowBashJob Transform Examples
The following example shows how to use StarlakeAirflowBashJob
to generate dynamically transform Jobs using starlake
and record corresponding outlets
.
options = {
# General options
'sl_env_var':'{"SL_ROOT": "/starlake/samples/starbake"}',
'pre_load_strategy':'imported',
# Bash options
'SL_STARLAKE_PATH':'/starlake/starlake.sh',
}
from ai.starlake.airflow.bash import StarlakeAirflowBashJob
sl_job = StarlakeAirflowBashJob(options=options)
from ai.starlake.common import keep_ascii_only, sanitize_id
from ai.starlake.job import StarlakeSparkConfig
from ai.starlake.airflow import StarlakeAirflowJob, DEFAULT_DAG_ARGS
import json
import os
import sys
from typing import Set, Union
from airflow import DAG
from airflow.datasets import Dataset
from airflow.utils.task_group import TaskGroup
cron = "None"
task_deps=json.loads("""[ {
"data" : {
"name" : "Customers.HighValueCustomers",
"typ" : "task",
"parent" : "Customers.CustomerLifeTimeValue",
"parentTyp" : "task",
"parentRef" : "CustomerLifetimeValue",
"sink" : "Customers.HighValueCustomers"
},
"children" : [ {
"data" : {
"name" : "Customers.CustomerLifeTimeValue",
"typ" : "task",
"parent" : "starbake.Customers",
"parentTyp" : "table",
"parentRef" : "starbake.Customers",
"sink" : "Customers.CustomerLifeTimeValue"
},
"children" : [ {
"data" : {
"name" : "starbake.Customers",
"typ" : "table",
"parentTyp" : "unknown"
},
"task" : false
}, {
"data" : {
"name" : "starbake.Orders",
"typ" : "table",
"parentTyp" : "unknown"
},
"task" : false
} ],
"task" : true
} ],
"task" : true
} ]""")
load_dependencies = StarlakeAirflowJob.get_context_var(var_name='load_dependencies', default_value='False', options=options)
schedule = None
datasets: Set[str] = []
_extra_dataset: Union[dict, None] = sys.modules[__name__].__dict__.get('extra_dataset', None)
_extra_dataset_parameters = '?' + '&'.join(list(f'{k}={v}' for (k,v) in _extra_dataset.items())) if _extra_dataset else ''
# if you choose to not load the dependencies, a schedule will be created to check if the dependencies are met
def _load_datasets(task: dict):
if 'children' in task:
for child in task['children']:
datasets.append(keep_ascii_only(child['data']['name']).lower())
_load_datasets(child)
if load_dependencies.lower() != 'true':
for task in task_deps:
_load_datasets(task)
schedule = list(map(lambda dataset: Dataset(dataset + _extra_dataset_parameters), datasets))
tags = StarlakeAirflowJob.get_context_var(var_name='tags', default_value="", options=options).split()
# [START instantiate_dag]
with DAG(dag_id=os.path.basename(__file__).replace(".py", "").replace(".pyc", "").lower(),
schedule_interval=None if cron == "None" else cron,
schedule=schedule,
default_args=sys.modules[__name__].__dict__.get('default_dag_args', DEFAULT_DAG_ARGS),
catchup=False,
user_defined_macros=sys.modules[__name__].__dict__.get('user_defined_macros', None),
user_defined_filters=sys.modules[__name__].__dict__.get('user_defined_filters', None),
tags=set([tag.upper() for tag in tags]),
description=description) as dag:
start = sl_job.dummy_op(task_id="start")
pre_tasks = sl_job.pre_tasks(dag=dag)
post_tasks = sl_job.post_tasks(dag=dag)
def create_task(airflow_task_id: str, task_name: str, task_type: str):
spark_config_name=StarlakeAirflowOptions.get_context_var('spark_config_name', task_name.lower(), options)
if (task_type == 'task'):
return sl_job.sl_transform(
task_id=airflow_task_id,
transform_name=task_name,
spark_config=spark_config(spark_config_name, **sys.modules[__name__].__dict__.get('spark_properties', {}))
)
else:
load_domain_and_table = task_name.split(".",1)
domain = load_domain_and_table[0]
table = load_domain_and_table[1]
return sl_job.sl_load(
task_id=airflow_task_id,
domain=domain,
table=table,
spark_config=spark_config(spark_config_name, **sys.modules[__name__].__dict__.get('spark_properties', {}))
)
# build takgroups recursively
def generate_task_group_for_task(task):
task_name = task['data']['name']
airflow_task_group_id = sanitize_id(task_name)
airflow_task_id = airflow_task_group_id
task_type = task['data']['typ']
if (task_type == 'task'):
airflow_task_id = airflow_task_group_id + "_task"
else:
airflow_task_id = airflow_task_group_id + "_table"
if (load_dependencies.lower() == 'true' and 'children' in task):
with TaskGroup(group_id=airflow_task_group_id) as airflow_task_group:
for transform_sub_task in task['children']:
generate_task_group_for_task(transform_sub_task)
upstream_tasks = list(airflow_task_group.children.values())
airflow_task = create_task(airflow_task_id, task_name, task_type)
airflow_task.set_upstream(upstream_tasks)
return airflow_task_group
else:
airflow_task = create_task(airflow_task_id=airflow_task_id, task_name=task_name, task_type=task_type)
return airflow_task
all_transform_tasks = [generate_task_group_for_task(task) for task in task_deps]
if pre_tasks:
start >> pre_tasks >> all_transform_tasks
else:
start >> all_transform_tasks
end = sl_job.dummy_op(task_id="end", outlets=[Dataset(keep_ascii_only(dag.dag_id))]+list(map(lambda x: Dataset(x.uri + _extra_dataset_parameters), sl_job.outlets)))
all_transform_tasks >> end
if post_tasks:
all_done = sl_job.dummy_op(task_id="all_done")
all_transform_tasks >> all_done >> post_tasks >> end
If you want to load the dependencies, you just need to set the load_dependencies
option to True
:
Google Cloud Platform
StarlakeAirflowDataprocJob
This class is a concrete implementation of StarlakeAirflowJob
that overrides the sl_job
method that will run the starlake command by submitting Dataproc job to the configured Dataproc cluster.
It delegates to an instance of the ai.starlake.airflow.gcp.StarlakeAirflowDataprocCluster
class the responsibility to :
- create the Dataproc cluster by instantiating
airflow.providers.google.cloud.operators.dataproc.DataprocCreateClusterOperator
- submit Dataproc job to the latter by instantiating
airflow.providers.google.cloud.operators.dataproc.DataprocSubmitJobOperator
- delete the Dataproc cluster by instantiating
airflow.providers.google.cloud.operators.dataproc.DataprocDeleteClusterOperator
This instance is available in the cluster
property of the StarlakeAirflowDataprocJob
class and can be configured using the ai.starlake.airflow.gcp.StarlakeAirflowDataprocClusterConfig
class.
The creation of the Dataproc cluster can be performed by calling the create_cluster
method of the cluster
property or by calling the pre_tasks
method of the StarlakeAirflowDataprocJob (the call to the pre_load
method will, behind the scene, call the pre_tasks
method and add the optional resulting task to the group of Airflow tasks).
The deletion of the Dataproc cluster can be performed by calling the delete_cluster
method of the cluster
property or by calling the post_tasks
method of the StarlakeAirflowDataprocJob.
Dataproc cluster configuration
Additional options may be specified to configure the Dataproc cluster.
name | type | description |
---|---|---|
cluster_id | str | the optional unique id of the cluster that will participate in the definition of the Dataproc cluster name (if not specified) |
dataproc_name | str | the optional dataproc name of the cluster that will participate in the definition of the Dataproc cluster name (if not specified) |
dataproc_project_id | str | the optional dataproc project id (the project id on which the composer has been instantiated by default) |
dataproc_region | str | the optional region (europe-west1 by default) |
dataproc_subnet | str | the optional subnet (the default subnet if not specified) |
dataproc_service_account | str | the optional service account (service-{self.project_id}@dataproc-accounts.iam.gserviceaccount.com by default) |
dataproc_image_version | str | the image version of the dataproc cluster (2.2-debian1 by default) |
dataproc_master_machine_type | str | the optional master machine type (n1-standard-4 by default) |
dataproc_master_disk_type | str | the optional master disk type (pd-standard by default) |
dataproc_master_disk_size | int | the optional master disk size (1024 by default) |
dataproc_worker_machine_type | str | the optional worker machine type (n1-standard-4 by default) |
dataproc_worker_disk_type | str | the optional worker disk size (pd-standard by default) |
dataproc_worker_disk_size | int | the optional worker disk size (1024 by default) |
dataproc_num_workers | int | the optional number of workers (4 by default) |
All of these options will be used by default if no StarlakeAirflowDataprocClusterConfig was defined when instantiating StarlakeAirflowDataprocCluster or if the latter was not defined when instantiating StarlakeAirflowDataprocJob.
Dataproc Job configuration
Additional options may be specified to configure the Dataproc job.
name | type | description |
---|---|---|
spark_jar_list | str | the required list of spark jars to be used (using , as separator) |
spark_bucket | str | the required bucket to use for spark and biqquery temporary storage |
spark_job_main_class | str | the optional main class of the spark job (ai.starlake.job.Main by default) |
spark_executor_memory | str | the optional amount of memory to use per executor process (11g by default) |
spark_executor_cores | int | the optional number of cores to use on each executor (4 by default) |
spark_executor_instances | int | the optional number of executor instances (1 by default) |
spark_executor_memory
, spark_executor_cores
and spark_executor_instances
options will be used by default if no StarlakeSparkConfig was passed to the sl_load
and sl_transform
methods.
StarlakeAirflowDataprocJob load Example
The following example shows how to use StarlakeAirflowDataprocJob
to generate dynamically DAGs that load domains using starlake
and record corresponding outlets
.
description="""example to load domain(s) using airflow starlake dataproc job"""
options = {
# General options
'sl_env_var':'{"SL_ROOT": "gcs://starlake/samples/starbake"}',
'pre_load_strategy':'pending',
# Dataproc cluster configuration
'dataproc_project_id':'starbake',
# Dataproc job configuration
'spark_bucket':'my-bucket',
'spark_jar_list':'gcs://artifacts/starlake.jar',
}
from ai.starlake.airflow.gcp import StarlakeAirflowDataprocJob
sl_job = StarlakeAirflowDataprocJob(options=options)
# all the code following the instantiation of the starlake job is exactly the same as that defined for StarlakeAirflowBashJob
#...
StarlakeAirflowCloudRunJob
This class is a concrete implementation of StarlakeAirflowJob
that overrides the sl_job
method that will run the starlake command by executing Cloud Run job.
Cloud Run job configuration
Additional options may be specified to configure the Cloud Run job.
name | type | description |
---|---|---|
cloud_run_project_id | str | the optional cloud run project id (the project id on which the composer has been instantiated by default) |
cloud_run_job_name | str | the required name of the cloud run job |
cloud_run_region | str | the optional region (europe-west1 by default) |
cloud_run_service_account | str | the optional cloud run service account |
cloud_run_async | bool | the optional flag to run the cloud run job asynchronously (True by default) |
retry_on_failure | bool | the optional flag to retry the cloud run job on failure (False by default) |
retry_delay_in_seconds | int | the optional delay in seconds to wait before retrying the cloud run job (10 by default) |
If the execution has been parameterized to be asynchronous, an airflow.sensors.bash.BashSensor
will be instantiated to wait for the completion of the Cloud Run job execution.
StarlakeAirflowCloudRunJob load Examples
The following examples shows how to use StarlakeAirflowCloudRunJob
to generate dynamically DAGs that load domains using starlake
and record corresponding outlets
.
Synchronous execution
description="""example to load domain(s) using airflow starlake cloud run job synchronously"""
options = {
# General options
'sl_env_var':'{"SL_ROOT": "gs://my-bucket/starbake"}',
'pre_load_strategy':'ack',
'global_ack_file_path':'gs://my-bucket/starbake/pending/HighValueCustomers/2024-22-01.ack',
# Cloud run options
'cloud_run_job_name':'starlake',
'cloud_run_project_id':'starbake',
'cloud_run_async':'False'
}
from ai.starlake.airflow.gcp import StarlakeAirflowCloudRunJob
sl_job = StarlakeAirflowCloudRunJob(options=options)
# all the code following the instantiation of the starlake job is exactly the same as that defined for StarlakeAirflowBashJob
#...
Asynchronous execution
description="""example to load domain(s) using airflow starlake cloud run job asynchronously"""
options = {
# General options
'sl_env_var':'{"SL_ROOT": "gs://my-bucket/starbake"}',
'pre_load_strategy':'pending',
# Cloud run options
'cloud_run_job_name':'starlake',
'cloud_run_project_id':'starbake',
# 'cloud_run_async':'True'
'retry_on_failure':'True',
}
# all the code following the options is exactly the same as that defined above
#...
Amazon Web Services
Azure
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for starlake_airflow-0.1.3.2-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | bbdad6f453f90611c3eae981307006e8e3f7c1fadb06132af29340a6e815f608 |
|
MD5 | dda35aad0ca904d0102344763f9c9f99 |
|
BLAKE2b-256 | d4eb206d8d27e2e7220034fdecec973e57ba6b994dec452bcaebca03525eb748 |