SQLAlchemy integration.
Project description
Starlette-SQLAlchemy
SQLAlchemy integration.
Installation
Install starlette_sqlalchemy
using PIP or poetry:
pip install starlette_sqlalchemy
# or
poetry add starlette_sqlalchemy
Features
- Vanilla SQLAlchemy - no wrappers, use plain SQLAlchemy as it is intended
- Query helper - removes boilerplate code when querying the database
- Pagination - automatically paginate SQLAlchemy queries
- Session middleware - create and inject SQLAlchemy session into request state
- Model repository - much like Django's ModelManager, encapsulates model queries in a single place
- Repository filters - reusable and composable filters for model repositories to share complex queries
Usage
Query helper
Query helper reduces amount of boilerplate code for SQLAlchemy queries.
import sqlalchemy as sa
from starlette_sqlalchemy import query
class User: ... # SQLAlchemy model
stmt = sa.select(User)
one_model = await query.one(stmt)
# fetch all models
many_models = await query.all(stmt)
# fetch model or return None if not found
nullable_model = await query.one_or_none(stmt)
# fetch model or raise exception if not found
model = await query.one_or_raise(stmt, ValueError("Model not found"))
# fetch model or return default value if not found
model = await query.one_or_default(stmt, User())
# test if model exists
exists = await query.exists(stmt)
# count models
count = await query.count(stmt)
# generate choices for select field (wtforms, etc)
choices = await query.choices(stmt, 'id', 'name')
Pagination
The library includces a helper for pagination.
import sqlalchemy as sa
from sqlalchemy.ext.asyncio import AsyncSession
from starlette_sqlalchemy import PageNumberPaginator
class User: ... # SQLAlchemy model
dbsession: AsyncSession = ...
stmt = sa.select(User)
paginator = PageNumberPaginator(dbsession)
page = await paginator.paginate(stmt, page=1, per_page=10)
for page_number in page.items:
print(page_number)
Session middleware
Session middleware automatically injects SQLAlchemy session into request state.
from sqlalchemy.ext.asyncio import async_sessionmaker, AsyncSession, create_async_engine
from starlette.applications import Starlette
from starlette.middleware import Middleware
from starlette_sqlalchemy import DbSessionMiddleware
async_engine = create_async_engine("sqlite+aiosqlite:///db.sqlite")
session_factory = async_sessionmaker(async_engine, class_=AsyncSession)
app = Starlette(
middleware=[
Middleware(DbSessionMiddleware, session_factory=session_factory),
]
)
async def view(request):
dbsession: AsyncSession = request.state.dbsession
# do something with dbsession
Model repository
Model repository is a high-level abstraction for working with models. The purpose of the repository is to encapsulate the logic for fetching and storing models. It best shines when used in larger projects where same model may be used in multiple context like admin panel, public-facing API, etc.
import sqlalchemy as sa
from starlette_sqlalchemy import Repo
class User:
is_active: bool # column
class APIUserRepo(Repo[User]):
"""Returns only active users"""
model_class = User
base_query = sa.select(User).where(User.is_active == True)
class AdminUserRepo(Repo[User]):
"""For admin panel, ignore active status and return all models"""
model_class = User
base_query = sa.select(User)
dbsession: AssertionError = ...
api_user_repo = APIUserRepo(dbsession)
admin_user_repo = AdminUserRepo(dbsession)
api_user_repo.all() # returns only active users
admin_user_repo.all() # returns all users
Feel free to extend the repo with custom methods.
Repository filters
Repository filters are composable and reusable SQLAchemy expressions. Also, you can pack complex logic into a single filter.
This patterns prevents code duplication, makes the codebase more maintainable, and reduces amount of silly bugs when you forget to filter out some data in some other place.
from sqlalchemy.ext.asyncio import AsyncSession
from starlette_sqlalchemy import Repo, RepoFilter
class User:
email: str # column
class UserRepo(Repo[User]):
model_class = User
class ByEmailFilter(RepoFilter[User]):
def __init__(self, email):
self.email = email
def apply(self, stmt):
return stmt.where(User.email == self.email)
dbsession: AsyncSession = ...
repo = UserRepo(dbsession)
users = await repo.all(ByEmailFilter('root@localhost'))
Composing filters
Filters can be composed together to create complex queries.
The underlying statements will be merged together using AND
operator.
import datetime
from sqlalchemy.ext.asyncio import AsyncSession
from starlette_sqlalchemy import Repo, RepoFilter
class User:
is_active: bool # column
registered_at: datetime # column
class UserRepo(Repo[User]):
model_class = User
class OnlyIsActive(RepoFilter[User]):
def apply(self, stmt):
return stmt.where(User.is_active == True)
class ByRegistrationDate(RepoFilter[User]):
def __init__(self, date):
self.date = date
def apply(self, stmt):
return stmt.where(User.registered_at >= self.date)
dbsession: AsyncSession = ...
repo = UserRepo(dbsession)
filter_ = OnlyIsActive() & ByRegistrationDate('2022-01-01')
users = await repo.all(filter_)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file starlette_sqlalchemy-0.1.1.tar.gz
.
File metadata
- Download URL: starlette_sqlalchemy-0.1.1.tar.gz
- Upload date:
- Size: 11.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.12.5 Linux/6.5.0-1025-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b95e07a6bf8c2b9d3cf1cddce4d6e98ac52c4cb2ad6e27a7e1c5fd6a44251c17 |
|
MD5 | 9217bd906baa6303ddd6b2b5d4b75f34 |
|
BLAKE2b-256 | 486ece995020a01ae61e3f3f1037f12a903c093dff51d634197b0dd340d69bd5 |
File details
Details for the file starlette_sqlalchemy-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: starlette_sqlalchemy-0.1.1-py3-none-any.whl
- Upload date:
- Size: 11.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.12.5 Linux/6.5.0-1025-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ff5dc932f476298ebf51e737dbb552f0ecf8022ab1906f01e80abe7b98804244 |
|
MD5 | ca41641be4171c9c943ef0ec1b17765b |
|
BLAKE2b-256 | 5ff6c76ab3b2803b80b16facf59e5acfc0641b1bf886e7476df1ec06a1df0cad |