Library for statistical testing and comparison of algorithm results
Project description
Statistical Tests for Data Science (StaTDS)
StaTDS is a library for mathematicians, scientists, and engineers. It includes various tools to facilitate statistical analysis given a set of data samples. Within this library, you will find a wide range of statistical tests to streamline the process when conducting comparative or sample studies.
Currently, the available statistical tests are:
Normality
Name | Function |
---|---|
Shapiro-Wilk | normality.shapiro_wilk_normality |
D'Agostino-Pearson | normality.d_agostino_pearson |
Kolmogorov-Smirnov | normality.kolmogorov_smirnov |
Homoscedasticity
Name | Function |
---|---|
Levene | homoscedasticity.levene |
Bartlett | homoscedasticity.bartlett |
Parametrics
Name | Function | Type Comparisons |
---|---|---|
T Test paired | parametrics.t_test_paired | Paired |
T Test unpaired | parametrics.t_test_unpaired | Paired |
ANOVA between cases | parametrics.anova_cases | Multiple |
ANOVA within cases | parametrics.anova_within_cases | Multiple |
Non Parametrics
Name | Function | Type Comparisons |
---|---|---|
Wilcoxon | no_parametrics.wilconxon | Paired |
Binomial Sign | no_parametrics.binomial | Paired |
Mann-Whitney U | no_parametrics.mannwhitneyu | Paired |
Friedman | no_parametrics.friedman | Multiple |
Friedman Aligned Ranks | no_parametrics.friedman_aligned_ranks | Multiple |
Quade | no_parametrics.quade | Multiple |
Post-hoc
Name | Function |
---|---|
Nemenyi | no_parametrics.nemenyi |
Bonferroni | no_parametrics.bonferroni |
Li | no_parametrics.li |
Holm | no_parametrics.holm |
Holland | no_parametrics.holland |
Finner | no_parametrics.finner |
Hochberg | no_parametrics.hochberg |
Hommel | no_parametrics.hommel |
Rom | no_parametrics.rom |
Schaffer | no_parametrics.shaffer |
Authors
Documentación
You can find all documentation in Documentation Folder or Web Docs.
Installation
StaTDS could be downloaded using two different ways: using pip or git as command line or directly from the webpage.
Using Git repository
The installation process for Git is detailed for each supported operating system in [1]. Additionally, a comprehensive guide on downloading StaTDS is provided. Git can be easily installed on widely used operating systems such as Windows, Mac, and Linux. It is worth noting that Git comes pre-installed on the majority of Mac and Linux machines by default.
$ git clone https//github.com/kdislab/StaTDS
$ cd StaTDS
$ python -m pip install --upgrade pip # To update pip
$ python -m pip install --upgrade build # To update build
$ python -m build
$ pip install dist/statds-1.0-py3-none-any.whl
Using pip
Ensure that Python and pip are correctly installed on your operating system before proceeding. Once you have completed this step, utilize the following commands for library installation according to your preferred configuration:
- If you only want to use the statistical tests:
$ pip install statds
- If you also want to generate PDFs:
$ pip install statds[pdf]
- If you want all the features:
$ pip install statds[full-app]
References
[1] 1.5 getting started - installing git. Git. (n.d.). https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file statds-0.1.tar.gz
.
File metadata
- Download URL: statds-0.1.tar.gz
- Upload date:
- Size: 2.2 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3a3dae675f6f1eb38b50f2ecc9d0948345164636e19f3f78a9f787dc925416d6 |
|
MD5 | 217a0b597458bb5e0cc1df7e177cd848 |
|
BLAKE2b-256 | 6e11a09ff87d696bbaca9ce3b42c4892efd64c2d8ddb666494f3a2326802deb4 |
File details
Details for the file statds-0.1-py3-none-any.whl
.
File metadata
- Download URL: statds-0.1-py3-none-any.whl
- Upload date:
- Size: 2.2 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5f30893b3ed39b877e43825deb5356276e3675a46b6ed40ceaf71b2518ac31ea |
|
MD5 | 543f4447cf6d5a7fb70af21f94f3ef19 |
|
BLAKE2b-256 | b29a49ad1213c7cb834ef6741689463d4217913f8d561382e47441cdf696ccc1 |