Skip to main content

Library for statistical testing and comparison of algorithm results

Project description

Statistical Tests for Data Science (StaTDS)

StaTDS is a library for mathematicians, scientists, and engineers. It includes various tools to facilitate statistical analysis given a set of data samples. Within this library, you will find a wide range of statistical tests to streamline the process when conducting comparative or sample studies.

Currently, the available statistical tests are:

Normality

Name Function
Shapiro-Wilk normality.shapiro_wilk_normality
D'Agostino-Pearson normality.d_agostino_pearson
Kolmogorov-Smirnov normality.kolmogorov_smirnov

Homoscedasticity

Name Function
Levene homoscedasticity.levene
Bartlett homoscedasticity.bartlett

Parametrics

Name Function Type Comparisons
T Test paired parametrics.t_test_paired Paired
T Test unpaired parametrics.t_test_unpaired Paired
ANOVA between cases parametrics.anova_cases Multiple
ANOVA within cases parametrics.anova_within_cases Multiple

Non Parametrics

Name Function Type Comparisons
Wilcoxon no_parametrics.wilconxon Paired
Binomial Sign no_parametrics.binomial Paired
Mann-Whitney U no_parametrics.mannwhitneyu Paired
Friedman no_parametrics.friedman Multiple
Friedman Aligned Ranks no_parametrics.friedman_aligned_ranks Multiple
Quade no_parametrics.quade Multiple

Post-hoc

Name Function
Nemenyi no_parametrics.nemenyi
Bonferroni no_parametrics.bonferroni
Li no_parametrics.li
Holm no_parametrics.holm
Holland no_parametrics.holland
Finner no_parametrics.finner
Hochberg no_parametrics.hochberg
Hommel no_parametrics.hommel
Rom no_parametrics.rom
Schaffer no_parametrics.shaffer

Authors

Documentación

You can find all documentation in Documentation Folder or Web Docs.

Installation

StaTDS could be downloaded using two different ways: using pip or git as command line or directly from the webpage.

Using Git repository

The installation process for Git is detailed for each supported operating system in [1]. Additionally, a comprehensive guide on downloading StaTDS is provided. Git can be easily installed on widely used operating systems such as Windows, Mac, and Linux. It is worth noting that Git comes pre-installed on the majority of Mac and Linux machines by default.

 $ git clone https//github.com/kdislab/StaTDS 
    $ cd StaTDS
    $ python -m pip install --upgrade pip # To update pip
    $ python -m pip install --upgrade build # To update build
    $ python -m build 
    $ pip install dist/statds-1.0-py3-none-any.whl

Using pip

Ensure that Python and pip are correctly installed on your operating system before proceeding. Once you have completed this step, utilize the following commands for library installation according to your preferred configuration:

  • If you only want to use the statistical tests:
    $ pip install statds
    
  • If you also want to generate PDFs:
    $ pip install statds[pdf]
    
  • If you want all the features:
    $ pip install statds[full-app]
    

References

[1] 1.5 getting started - installing git. Git. (n.d.). https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

statds-0.1.tar.gz (2.2 MB view details)

Uploaded Source

Built Distribution

statds-0.1-py3-none-any.whl (2.2 MB view details)

Uploaded Python 3

File details

Details for the file statds-0.1.tar.gz.

File metadata

  • Download URL: statds-0.1.tar.gz
  • Upload date:
  • Size: 2.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for statds-0.1.tar.gz
Algorithm Hash digest
SHA256 3a3dae675f6f1eb38b50f2ecc9d0948345164636e19f3f78a9f787dc925416d6
MD5 217a0b597458bb5e0cc1df7e177cd848
BLAKE2b-256 6e11a09ff87d696bbaca9ce3b42c4892efd64c2d8ddb666494f3a2326802deb4

See more details on using hashes here.

File details

Details for the file statds-0.1-py3-none-any.whl.

File metadata

  • Download URL: statds-0.1-py3-none-any.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for statds-0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 5f30893b3ed39b877e43825deb5356276e3675a46b6ed40ceaf71b2518ac31ea
MD5 543f4447cf6d5a7fb70af21f94f3ef19
BLAKE2b-256 b29a49ad1213c7cb834ef6741689463d4217913f8d561382e47441cdf696ccc1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page