Skip to main content

statistics package

Project description

Python Versions License: GPL v3 pre-commit Language grade: Python Total alerts

codecov GitHub last commit GitHub forks GitHub Repo stars

Current release info

Name Downloads Version Platforms
Conda Recipe Conda Downloads Downloads Downloads Downloads PyPI - Downloads Conda Version PyPI version Anaconda-Server Badge Conda Platforms Join the chat at https://gitter.im/Hapi-Nile/Hapi

statista - Statistics package

statista is a statistics package

statista

Main Features

  • Statistical Distributions
    • GEV
    • GUMBL
    • Normal
    • Exponential
  • Parameter estimation methods
    • Lmoments
    • ML
    • MOM
  • One-at-time (O-A-T) Sensitivity analysis.
  • Sobol visualization
  • Statistical descriptors
  • Extreme value analysis

Installing statista

Installing statista from the conda-forge channel can be achieved by:

conda install -c conda-forge statista

It is possible to list all of the versions of statista available on your platform with:

conda search statista --channel conda-forge

Install from Github

to install the last development to time you can install the library from github

pip install git+https://github.com/MAfarrag/statista

pip

to install the last release you can easly use pip

pip install statista==0.5.0

Quick start

  >>> import statista

other code samples

======= History

0.1.0 (2022-05-24)

  • First release on PyPI.

0.1.7 (2022-12-26)

  • lock numpy to version 1.23.5

0.1.8 (2023-01-31)

  • bump up versions

0.2.0 (2023-02-08)

  • add eva (Extreme value analysis) module
  • fix bug in obtaining distribution parameters using optimization method

0.3.0 (2023-02-19)

  • add documentations for both GEV and gumbel distributions.
  • add lmoment parameter estimation method for all distributions.
  • add exponential and normal distributions
  • modify the pdf, cdf, and probability plot plots
  • create separate plot and confidence_interval modules.

0.4.0 (2023-11-23)

  • add Pearson 3 distribution
  • Use setup.py instead of pyproject.toml.
  • Correct pearson correlation coefficient and add documentation .
  • replace the pdf and cdf by the methods from scipy package.

0.5.0 (2023-12-11)

  • Unify the all the methods for the distributions.
  • Use factory design pattern to create the distributions.
  • add tests for the eva module.
  • use snake_case for the methods and variables.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

statista-0.5.0.tar.gz (46.7 kB view details)

Uploaded Source

Built Distribution

statista-0.5.0-py3-none-any.whl (45.3 kB view details)

Uploaded Python 3

File details

Details for the file statista-0.5.0.tar.gz.

File metadata

  • Download URL: statista-0.5.0.tar.gz
  • Upload date:
  • Size: 46.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for statista-0.5.0.tar.gz
Algorithm Hash digest
SHA256 f0537a6221cbd2dd7b7f6bc3aece9836ecd1b9bfd3393f1489dd252fa148fe5b
MD5 16db5c3c565c329f1cfdbdef368a1e8a
BLAKE2b-256 b583b953a9ddbf1b98e81276d0393e61a30738279aec66fec2c9bc36b3743456

See more details on using hashes here.

File details

Details for the file statista-0.5.0-py3-none-any.whl.

File metadata

  • Download URL: statista-0.5.0-py3-none-any.whl
  • Upload date:
  • Size: 45.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for statista-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 9d2b96b3f8000e2b137030d0be870b63da38439cd06467afe53863aa03b702cb
MD5 4ed7e37876a9f38b20a06ce6affcbaff
BLAKE2b-256 b6d2f70ab558523eaaf472bde1d3c962d91c754fd6c1d394c174861ada57ad9c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page