Statistical plotting with good aesthetics.
Project description
Tools for Statistical Plotting
Chen Liu @ Krishnaswamy Lab, Yale University
Please kindly Star this repo for better reach if you find it useful.
Installation
pip install statistical-plot
Example Plots
Statistical Bar Plot
Usage
Statistical Bar Plot
from statistical_plot import sbplot
fig = plt.figure(figsize=(12, 6))
ax = fig.add_subplot(1, 2, 1)
np.random.seed(1)
method_list = ['method_1', 'method_2', 'method_3']
auroc_data_dict = {
'method_1': np.clip(np.random.normal(loc=0.92, scale=0.04, size=(10,)), 0, 1),
'method_2': np.clip(np.random.normal(loc=0.75, scale=0.03, size=(10,)), 0, 1),
'method_3': np.clip(np.random.normal(loc=0.98, scale=0.02, size=(10,)), 0, 1),
}
auroc_pvals_dict = {
'method_1 vs method_3': 0.01,
'method_2 vs method_3': 5e-5,
}
acc_data_dict = {
'method_1': np.clip(np.random.normal(loc=0.89, scale=0.05, size=(10,)), 0, 1),
'method_2': np.clip(np.random.normal(loc=0.81, scale=0.04, size=(10,)), 0, 1),
'method_3': np.clip(np.random.normal(loc=0.94, scale=0.03, size=(10,)), 0, 1),
}
acc_pvals_dict = {
'method_1 vs method_3': 0.01,
'method_2 vs method_3': 0.001,
}
f1_data_dict = {
'method_1': np.clip(np.random.normal(loc=0.92, scale=0.04, size=(10,)), 0, 1),
'method_2': np.clip(np.random.normal(loc=0.87, scale=0.03, size=(10,)), 0, 1),
'method_3': np.clip(np.random.normal(loc=0.95, scale=0.02, size=(10,)), 0, 1),
}
f1_pvals_dict = {
'method_1 vs method_3': 0.01,
'method_2 vs method_3': 3e-4,
}
plt.rcParams['font.family'] = 'serif'
plt.rcParams['legend.fontsize'] = 12
fig = plt.figure(figsize=(14, 6))
ax = fig.add_subplot(1, 3, 1)
ax = sbplot(ax=ax, method_list=method_list, data_dict=auroc_data_dict, pvals_dict=auroc_pvals_dict, ymin=0)
ax.set_ylabel('AUROC', fontsize=18)
ax = fig.add_subplot(1, 3, 2)
ax = sbplot(ax=ax, method_list=method_list, data_dict=acc_data_dict, pvals_dict=acc_pvals_dict, ymin=0)
ax.set_ylabel('Accuracy', fontsize=18)
ax = fig.add_subplot(1, 3, 3)
ax = sbplot(ax=ax, method_list=method_list, data_dict=f1_data_dict, pvals_dict=f1_pvals_dict, ymin=0)
ax.set_ylabel('F1 Score', fontsize=18)
fig.tight_layout(pad=1)
fig.savefig('./sbplot_example.png')
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
statistical-plot-0.10.tar.gz
(5.0 kB
view details)
Built Distribution
File details
Details for the file statistical-plot-0.10.tar.gz
.
File metadata
- Download URL: statistical-plot-0.10.tar.gz
- Upload date:
- Size: 5.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a1883b855522f3d7d5e3a3e3e98dfa1f4891a45487f87b2d89ac30d7448a479b |
|
MD5 | edffec03c11095df7dd312b83c37049a |
|
BLAKE2b-256 | 32605894186aa321b66a3c38b2aca53d6443dd6d244df37943c9de0183a65bfc |
File details
Details for the file statistical_plot-0.10-py3-none-any.whl
.
File metadata
- Download URL: statistical_plot-0.10-py3-none-any.whl
- Upload date:
- Size: 5.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | efba3e8d871211d824d729724c6266c039fc9ea8270bd706378a8dc8dbdf04e5 |
|
MD5 | d052e640f896cd69d9e1916c6be17cd6 |
|
BLAKE2b-256 | 832f3395c1dfdcf1e0cace0a28a0dcde78ec5ab105df4c407b2f9b3fcbcef09a |