Skip to main content

Statistical plotting with good aesthetics.

Project description

Tools for Statistical Plotting

Chen Liu @ Krishnaswamy Lab, Yale University

Latest PyPI version PyPI license PyPI download month PyPI download day made-with-python

Please kindly Star Github Stars this repo for better reach if you find it useful.

Installation

pip install statistical-plot

Example Plots

Statistical Bar Plot

Usage

Statistical Bar Plot

from statistical_plot import sbplot
fig = plt.figure(figsize=(12, 6))
ax = fig.add_subplot(1, 2, 1)

np.random.seed(1)

method_list = ['method_1', 'method_2', 'method_3']

auroc_data_dict = {
    'method_1': np.clip(np.random.normal(loc=0.92, scale=0.04, size=(10,)), 0, 1),
    'method_2': np.clip(np.random.normal(loc=0.75, scale=0.03, size=(10,)), 0, 1),
    'method_3': np.clip(np.random.normal(loc=0.98, scale=0.02, size=(10,)), 0, 1),
}
auroc_pvals_dict = {
    'method_1 vs method_3': 0.01,
    'method_2 vs method_3': 5e-5,
}

acc_data_dict = {
    'method_1': np.clip(np.random.normal(loc=0.89, scale=0.05, size=(10,)), 0, 1),
    'method_2': np.clip(np.random.normal(loc=0.81, scale=0.04, size=(10,)), 0, 1),
    'method_3': np.clip(np.random.normal(loc=0.94, scale=0.03, size=(10,)), 0, 1),
}
acc_pvals_dict = {
    'method_1 vs method_3': 0.01,
    'method_2 vs method_3': 0.001,
}

f1_data_dict = {
    'method_1': np.clip(np.random.normal(loc=0.92, scale=0.04, size=(10,)), 0, 1),
    'method_2': np.clip(np.random.normal(loc=0.87, scale=0.03, size=(10,)), 0, 1),
    'method_3': np.clip(np.random.normal(loc=0.95, scale=0.02, size=(10,)), 0, 1),
}
f1_pvals_dict = {
    'method_1 vs method_3': 0.01,
    'method_2 vs method_3': 3e-4,
}

plt.rcParams['font.family'] = 'serif'
plt.rcParams['legend.fontsize'] = 12
fig = plt.figure(figsize=(14, 6))
ax = fig.add_subplot(1, 3, 1)
ax = sbplot(ax=ax, method_list=method_list, data_dict=auroc_data_dict, pvals_dict=auroc_pvals_dict, ymin=0)
ax.set_ylabel('AUROC', fontsize=18)

ax = fig.add_subplot(1, 3, 2)
ax = sbplot(ax=ax, method_list=method_list, data_dict=acc_data_dict, pvals_dict=acc_pvals_dict, ymin=0)
ax.set_ylabel('Accuracy', fontsize=18)

ax = fig.add_subplot(1, 3, 3)
ax = sbplot(ax=ax, method_list=method_list, data_dict=f1_data_dict, pvals_dict=f1_pvals_dict, ymin=0)
ax.set_ylabel('F1 Score', fontsize=18)

fig.tight_layout(pad=1)
fig.savefig('./sbplot_example.png')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

statistical-plot-0.10.tar.gz (5.0 kB view hashes)

Uploaded Source

Built Distribution

statistical_plot-0.10-py3-none-any.whl (5.5 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page