Skip to main content

easily stream StatsBomb data into Python

Project description

statsbombpy StatsBombPython_Lock

PyPI version

Brought to you by StatsBomb, this repository is a Python package that allows users to easily stream StatsBomb data into Python using your log in credentials for the API or free data from our GitHub page. API access is for paying customers only

Support: support@statsbomb.com

Installation Instructions

pip install statsbombpy

Running the tests

nose2 -v --pretty-assert

Configuration

Authentication

Environment Variables

Authentication can be done by setting environment variables named SB_USERNAME and SB_PASSWORD to your login credentials.

Manual Calls

Alternatively, if you don't want to use environment variables, all functions accept an argument creds to pass your login credentials in the format {"user": "", "passwd": ""}

Concurrency

You can specify how many of your computer's cores to use when running the sb.competition_events() and sb.competition_frames() functions by setting the environment variable SB_CORES to the number you want to use. Allowing statsbombpy to use more cores will speed up those functions.

If you don't have an environment variable set we will try to detect the number of cores in your system and use 2 less than that number. If we cannot detect the number of cores we set the number to 4.

Open Data

StatsBomb's open data can be accessed without the need of authentication.

StatsBomb are committed to sharing new data and research publicly to enhance understanding of the game of Football. We want to actively encourage new research and analysis at all levels. Therefore we have made certain leagues of StatsBomb Data freely available for public use for research projects and genuine interest in football analytics.

StatsBomb are hoping that by making data freely available, we will extend the wider football analytics community and attract new talent to the industry. We would like to collect some basic personal information about users of our data. By giving us your email address, it means we will let you know when we make more data, tutorials and research available. We will store the information in accordance with our Privacy Policy and the GDPR.

Terms & Conditions

Whilst we are keen to share data and facilitate research, we also urge you to be responsible with the data. Please register your details on https://www.statsbomb.com/resource-centre and read our User Agreement carefully. By using this repository, you are agreeing to the user agreement. If you publish, share or distribute any research, analysis or insights based on this data, please state the data source as StatsBomb and use our logo.

Usage

from statsbombpy import sb

Competitions

sb.competitions()
competition_id season_id country_name competition_name competition_gender season_name match_updated match_available
0 9 42 Germany 1. Bundesliga male 2019/2020 2019-12-29T07:47:45.981 2019-12-29T07:47:45.981
1 9 4 Germany 1. Bundesliga male 2018/2019 2019-12-16T23:09:16.168756 2019-12-16T23:09:16.168756
2 9 1 Germany 1. Bundesliga male 2017/2018 2019-12-16T23:09:16.168756 2019-12-16T23:09:16.168756
3 78 42 Croatia 1. HNL male 2019/2020 2020-01-02T10:35:49.065 2020-01-02T10:35:49.065
4 10 42 Germany 2. Bundesliga male 2019/2020 2019-12-27T00:36:37.498 2019-12-27T00:36:37.498

Matches

sb.matches(competition_id=9, season_id=42)
match_id match_date kick_off competition season home_team away_team home_score away_score match_status last_updated match_week competition_stage stadium referee home_managers away_managers data_version shot_fidelity_version xy_fidelity_version
0 303299 2019-12-15 18:00:00.000 Germany - 1. Bundesliga 2019/2020 Schalke 04 Eintracht Frankfurt 1 0 available 2019-12-17T09:50:17.558 15 Regular Season VELTINS-Arena F. Zwayer David Wagner Adi Hütter 1.1.0 2 2
1 303223 2019-09-01 18:00:00.000 Germany - 1. Bundesliga 2019/2020 Eintracht Frankfurt Fortuna Düsseldorf 2 1 available 2019-12-16T23:09:16.168756 3 Regular Season Commerzbank-Arena F. Willenborg Adi Hütter Friedhelm Funkel 1.1.0 2 2
2 303083 2019-12-15 15:30:00.000 Germany - 1. Bundesliga 2019/2020 Wolfsburg Borussia Mönchengladbach 2 1 available 2019-12-17T15:52:17.843 15 Regular Season VOLKSWAGEN ARENA F. Brych Oliver Glasner Marco Rose 1.1.0 2 2
3 303266 2019-12-14 15:30:00.000 Germany - 1. Bundesliga 2019/2020 Hertha Berlin Freiburg 1 0 available 2019-12-17T17:43:18.285 15 Regular Season Olympiastadion Berlin F. Willenborg Jürgen Klinsmann Christian Streich 1.1.0 2 2
4 303073 2019-12-21 15:30:00.000 Germany - 1. Bundesliga 2019/2020 Bayern Munich Wolfsburg 2 0 available 2019-12-23T18:02:36.454 17 Regular Season Allianz Arena C. Dingert Hans-Dieter Flick Oliver Glasner 1.1.0 2 2

Lineups

sb.lineups(match_id=303299)["Eintracht Frankfurt"]
player_id player_name player_nickname birth_date player_gender player_height player_weight jersey_number country
0 3204 Almamy Touré None 1996-04-28 male 182.0 72.0 18 Mali
1 5591 Filip Kostić None 1992-11-01 male 184.0 82.0 10 Serbia
2 7713 Obite Evan N"Dicka Evan N'Dicka 1999-08-20 male 190.0 NaN 2 France
3 8307 Martin Hinteregger None 1992-09-07 male 184.0 83.0 13 Austria
4 8669 Mijat Gaćinović None 1995-02-08 male 175.0 66.0 11 Serbia

Events

The default settings for querying events return a single dataframe with all event types and event attributes.

events = sb.events(match_id=303299)
ball_receipt_outcome ball_recovery_offensive ball_recovery_recovery_failure block_deflection carry_end_location clearance_aerial_won clearance_body_part clearance_head clearance_left_foot clearance_right_foot counterpress dribble_no_touch dribble_outcome dribble_overrun duel_outcome duel_type duration foul_committed_advantage foul_committed_card foul_won_advantage foul_won_defensive goalkeeper_body_part goalkeeper_end_location goalkeeper_outcome goalkeeper_position goalkeeper_technique goalkeeper_type id index injury_stoppage_in_chain interception_outcome location match_id minute off_camera out pass_aerial_won pass_angle pass_assisted_shot_id pass_body_part pass_cross pass_cut_back pass_deflected pass_end_location pass_goal_assist pass_height pass_length pass_outcome pass_outswinging pass_recipient pass_shot_assist pass_straight pass_switch pass_technique pass_through_ball pass_type pass_xclaim period play_pattern player position possession possession_team related_events second shot_aerial_won shot_body_part shot_end_location shot_first_time shot_freeze_frame shot_key_pass_id shot_one_on_one shot_outcome shot_statsbomb_xg shot_statsbomb_xg2 shot_technique shot_type substitution_outcome substitution_replacement team timestamp type under_pressure
500 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 3.498736 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 84828c06-41b5-44eb-aa92-1710bdb818ac 1838 NaN NaN [50.1, 16.6] 303299 47 NaN NaN NaN 2.720095 NaN Left Foot NaN NaN NaN [13.3, 33.1] NaN Ground Pass 40.329765 NaN NaN Frederik Rønnow NaN NaN NaN NaN NaN NaN NaN 2 Regular Play Obite Evan N"Dicka Left Center Back 103 Eintracht Frankfurt [ae3094e3-faa3-4608-8284-d9b8cca77711, c1202f1c-0831-4e88-83b2-597f56f0c858] 52 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN Eintracht Frankfurt 00:02:52.438 Pass True
501 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 3.604236 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 9061cd20-513b-499f-b925-f1de5f241281 1840 NaN NaN [13.3, 33.1] 303299 47 NaN NaN NaN -0.153945 NaN Right Foot NaN NaN NaN [77.1, 23.2] NaN High Pass 64.563540 Incomplete NaN Mijat Gaćinović NaN NaN NaN NaN NaN NaN NaN 2 Regular Play Frederik Rønnow Goalkeeper 103 Eintracht Frankfurt [8e6495a7-782a-4f1a-845f-3ec50d761a1e, ff758a12-1ba6-4dd4-8b2c-7d39aa7aed97] 55 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN Eintracht Frankfurt 00:02:55.937 Pass NaN
502 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 2.101999 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 8e6495a7-782a-4f1a-845f-3ec50d761a1e 1842 NaN NaN [43.0, 56.9] 303299 47 NaN NaN NaN -0.703110 NaN Head NaN NaN NaN [64.0, 39.1] NaN High Pass 27.528894 NaN NaN Amine Harit NaN NaN NaN NaN NaN Recovery NaN 2 Regular Play Ozan Muhammed Kabak Right Center Back 104 Schalke 04 [9061cd20-513b-499f-b925-f1de5f241281, be6dfe7d-7596-4cc2-8cd9-8c17d064317e] 59 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN Schalke 04 00:02:59.541 Pass NaN
503 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.187459 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 86431bc7-210a-4868-8e18-26ff38becefc 1854 NaN NaN [65.9, 12.6] 303299 48 NaN NaN NaN -0.730239 NaN Right Foot NaN NaN NaN [74.5, 4.9] NaN Ground Pass 11.543396 NaN NaN Amine Harit NaN NaN NaN NaN NaN NaN NaN 2 Regular Play Suat Serdar Left Defensive Midfield 104 Schalke 04 [761b4e65-8f64-464c-8153-6a98465208ba] 7 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN Schalke 04 00:03:07.689 Pass NaN
504 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.766628 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 6e58c713-622c-4246-8243-e4162e487a1c 1858 NaN NaN [79.1, 10.5] 303299 48 NaN NaN NaN 1.254940 NaN Right Foot NaN NaN NaN [84.1, 25.8] NaN Ground Pass 16.096273 NaN NaN Rabbi Matondo NaN NaN NaN NaN NaN NaN NaN 2 Regular Play Amine Harit Center Attacking Midfield 104 Schalke 04 [b1960a76-d3ae-4ef3-a2cd-47eca8c25e0a, dd1575c0-a408-4177-944d-7e86d2f79181] 11 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN Schalke 04 00:03:11.719 Pass True

It's also possible to get distinct dataframes for each event type and/or to have distinct event attributes on their own columns

sb.events(match_id=303299, split=True, flatten_attrs=False)["dribbles"]
id index period timestamp minute second type possession possession_team play_pattern team player position location duration under_pressure related_events dribble match_id
0 b190c01f-ad24-468c-8241-f955b91d996c 131 1 00:02:08.032 2 8 Dribble 4 Schalke 04 Regular Play Schalke 04 Daniel Caligiuri Right Wing [110.2, 62.9] 0.000000 True [60f822df-5747-4787-b0f9-45bf5217eb8a] {'outcome': {'id': 8, 'name': 'Complete'}} 303299
1 4d773c92-f89f-491e-b3e0-3a1d2e863148 399 1 00:08:48.623 8 48 Dribble 18 Schalke 04 Regular Play Schalke 04 Amine Harit Center Attacking Midfield [88.9, 22.7] 0.000000 True [93d829df-eea7-416b-95aa-7593828cfade] {'outcome': {'id': 8, 'name': 'Complete'}} 303299
2 8a78dce4-998a-4e81-902c-9f3957cebc9d 460 1 00:13:30.202 13 30 Dribble 23 Schalke 04 Regular Play Schalke 04 Daniel Caligiuri Right Wing [99.5, 68.1] 0.007309 True [772c5aae-e34e-4364-8a98-7caf7636c90b] {'outcome': {'id': 9, 'name': 'Incomplete'}} 303299
3 e44d0122-2f2e-4771-820d-cc326a8b0379 496 1 00:14:10.135 14 10 Dribble 24 Schalke 04 From Throw In Schalke 04 Suat Serdar Left Defensive Midfield [41.2, 31.7] 0.000000 True [4de4039f-7efc-461b-b7d6-27c32ec2cd2a] {'outcome': {'id': 8, 'name': 'Complete'}} 303299
4 9555afbd-d838-42c9-8f80-be3cd09e4c4a 793 1 00:20:18.409 20 18 Dribble 33 Eintracht Frankfurt Regular Play Eintracht Frankfurt Timothy Chandler Right Wing Back [81.8, 75.7] 0.000000 True [a5c88cee-6319-4c25-91cd-8a028d8dbfbf] {'outcome': {'id': 9, 'name': 'Incomplete'}} 303299

Competition Events

All events from a given competition can be queried and stored on a single dataframe

events = sb.competition_events(
    country="Germany",
    division= "1. Bundesliga",
    season="2019/2020",
    gender="male"
)

grouped_events = sb.competition_events(
    country="Germany",
    division= "1. Bundesliga",
    season="2019/2020",
    split=True
)
grouped_events["dribbles"]
id index period timestamp minute second type possession possession_team play_pattern team player position location duration under_pressure related_events dribble match_id
0 b190c01f-ad24-468c-8241-f955b91d996c 131 1 00:02:08.032 2 8 Dribble 4 Schalke 04 Regular Play Schalke 04 Daniel Caligiuri Right Wing [110.2, 62.9] 0.000000 True [60f822df-5747-4787-b0f9-45bf5217eb8a] {'outcome': {'id': 8, 'name': 'Complete'}} 303299
1 4d773c92-f89f-491e-b3e0-3a1d2e863148 399 1 00:08:48.623 8 48 Dribble 18 Schalke 04 Regular Play Schalke 04 Amine Harit Center Attacking Midfield [88.9, 22.7] 0.000000 True [93d829df-eea7-416b-95aa-7593828cfade] {'outcome': {'id': 8, 'name': 'Complete'}} 303299
2 8a78dce4-998a-4e81-902c-9f3957cebc9d 460 1 00:13:30.202 13 30 Dribble 23 Schalke 04 Regular Play Schalke 04 Daniel Caligiuri Right Wing [99.5, 68.1] 0.007309 True [772c5aae-e34e-4364-8a98-7caf7636c90b] {'outcome': {'id': 9, 'name': 'Incomplete'}} 303299
3 e44d0122-2f2e-4771-820d-cc326a8b0379 496 1 00:14:10.135 14 10 Dribble 24 Schalke 04 From Throw In Schalke 04 Suat Serdar Left Defensive Midfield [41.2, 31.7] 0.000000 True [4de4039f-7efc-461b-b7d6-27c32ec2cd2a] {'outcome': {'id': 8, 'name': 'Complete'}} 303299
4 9555afbd-d838-42c9-8f80-be3cd09e4c4a 793 1 00:20:18.409 20 18 Dribble 33 Eintracht Frankfurt Regular Play Eintracht Frankfurt Timothy Chandler Right Wing Back [81.8, 75.7] 0.000000 True [a5c88cee-6319-4c25-91cd-8a028d8dbfbf] {'outcome': {'id': 9, 'name': 'Incomplete'}} 303299

360 Metrics

If you have access to 360 data for a competition, you can set include_360_metrics=True in the events() and competition_events() functions to retrieve 360 metrics such a line breaking passess together with the event data.

The open data does not include the 360 metrics. This is currently only available to customers with a data subscription.

events = sb.events(match_id=3837323, include_360_metrics=True)
comp_events = sb.competition_events(
            country="Europe",
            division="Champions League",
            season="2022/2023",
            include_360_metrics=True,
)
comp_events
50_50 bad_behaviour_card ball_receipt_exceeds_distance ball_receipt_in_space ball_receipt_outcome ball_recovery_offensive ball_recovery_recovery_failure block_deflection block_offensive block_save_block carry_end_location clearance_aerial_won clearance_body_part clearance_head clearance_left_foot clearance_other clearance_right_foot counterpress distance_to_nearest_defender dribble_no_touch dribble_nutmeg dribble_outcome dribble_overrun duel_outcome duel_type duration foul_committed_advantage foul_committed_card foul_committed_offensive foul_committed_penalty foul_committed_type foul_won_advantage foul_won_defensive foul_won_penalty goalkeeper_body_part goalkeeper_end_location goalkeeper_lost_in_play goalkeeper_lost_out goalkeeper_outcome goalkeeper_position goalkeeper_punched_out goalkeeper_shot_saved_off_target goalkeeper_shot_saved_to_post goalkeeper_success_in_play goalkeeper_technique goalkeeper_type half_start_late_video_start id index injury_stoppage_in_chain interception_outcome line_breaking_pass location minute miscontrol_aerial_won num_defenders_on_goal_side_of_actor obv_against_after obv_against_before obv_against_net obv_for_after obv_for_before obv_for_net obv_total_net off_camera out pass_aerial_won pass_angle pass_assisted_shot_id pass_body_part pass_cross pass_cut_back pass_deflected pass_end_location pass_goal_assist pass_height pass_inswinging pass_length pass_miscommunication pass_no_touch pass_outcome pass_outswinging pass_recipient pass_shot_assist pass_straight pass_switch pass_technique pass_through_ball pass_type pass_xclaim period play_pattern player player_id player_off_permanent position possession possession_team possession_team_id related_events second shot_aerial_won shot_body_part shot_deflected shot_end_location shot_first_time shot_freeze_frame shot_key_pass_id shot_one_on_one shot_open_goal shot_outcome shot_redirect shot_saved_off_target shot_saved_to_post shot_statsbomb_xg shot_statsbomb_xg2 shot_technique shot_type substitution_outcome substitution_replacement team timestamp type under_pressure visible_opponents visible_teammates
0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 3479244f-8234-43c9-a389-4ce587062b48 1 NaN NaN NaN NaN 0 NaN NaN None None None None None None None NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1 Regular Play NaN NaN NaN NaN 1 Real Madrid 220 NaN 0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN Real Madrid 00:00:00.000 Starting XI NaN NaN NaN
1 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN c4f5a51b-741e-4920-ac32-02349b1f2755 2 NaN NaN NaN NaN 0 NaN NaN None None None None None None None NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1 Regular Play NaN NaN NaN NaN 1 Real Madrid 220 NaN 0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN Celtic 00:00:00.000 Starting XI NaN NaN NaN
2 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 27be67e7-fdb5-4db9-92b6-8f3214cecec4 1 NaN NaN NaN NaN 0 NaN NaN None None None None None None None NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1 Regular Play NaN NaN NaN NaN 1 Juventus 224 NaN 0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN Juventus 00:00:00.000 Starting XI NaN NaN NaN
3 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 819c381e-29c1-4f10-a6c3-acc3181cec14 2 NaN NaN NaN NaN 0 NaN NaN None None None None None None None NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1 Regular Play NaN NaN NaN NaN 1 Juventus 224 NaN 0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN Paris Saint-Germain 00:00:00.000 Starting XI NaN NaN NaN
4 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN e6d42d87-c78a-4286-94fd-4095e9f7b16f 1 NaN NaN NaN NaN 0 NaN NaN None None None None None None None NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1 Regular Play NaN NaN NaN NaN 1 Manchester City 36 NaN 0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN Manchester City 00:00:00.000 Starting XI NaN NaN NaN

360 Frames

The frame functions will return the raw 360 freeze frame data along with the visible area for each frame. This is returned at the player level so you have multiple rows per frame/event_id.

match_frames = sb.frames(match_id=3772072, fmt='dataframe')
comp_frames = sb.competition_frames(
    country="Germany",
    division= "1. Bundesliga",
    season="2019/2020"
)
match_frames
actor distance_from_edge_of_visible_area event_uuid keeper location match_id teammate visible_area
0 False 5.183739 065b15cc-b550-48de-9a1e-a9608d8e6c6d False [79.14114105224532, 12.646560364129726] 3855869 False [50.8965834880119, 80.0, 55.8915648466696, 6.76382112514142, 80.0765213141343, 1.48859955554994, 113.056993108772, 80.0, 50.8965834880119, 80.0]
1 False 7.784551 065b15cc-b550-48de-9a1e-a9608d8e6c6d False [80.68650097437124, 23.040779651892883] 3855869 True [50.8965834880119, 80.0, 55.8915648466696, 6.76382112514142, 80.0765213141343, 1.48859955554994, 113.056993108772, 80.0, 50.8965834880119, 80.0]
2 False 8.873694 065b15cc-b550-48de-9a1e-a9608d8e6c6d False [80.20033992405365, 24.695673759901382] 3855869 False [50.8965834880119, 80.0, 55.8915648466696, 6.76382112514142, 80.0765213141343, 1.48859955554994, 113.056993108772, 80.0, 50.8965834880119, 80.0]
3 False 9.738309 065b15cc-b550-48de-9a1e-a9608d8e6c6d False [82.43349155444821, 32.24426347120625] 3855869 False [50.8965834880119, 80.0, 55.8915648466696, 6.76382112514142, 80.0765213141343, 1.48859955554994, 113.056993108772, 80.0, 50.8965834880119, 80.0]
4 False 11.049633 065b15cc-b550-48de-9a1e-a9608d8e6c6d False [81.320294294838, 32.98015558905158] 3855869 True [50.8965834880119, 80.0, 55.8915648466696, 6.76382112514142, 80.0765213141343, 1.48859955554994, 113.056993108772, 80.0, 50.8965834880119, 80.0]

Aggregated Stats

For customers we also provide aggregated statistics at the player-match, player-season and team-season levels.

player_match = sb.player_match_stats(3772072)
player_season = sb.player_season_stats(competition_id=9, season_id=42)
team_match = sb.team_match_stats(3772072)
team_season = sb.team_season_stats(competition_id=9, season_id=42)

player_match
player_match_pressures player_match_long_balls player_match_shot_touch_ratio player_match_passes_into_box player_match_pressure_duration_avg player_match_crossing_ratio player_match_op_f3_forward_passes player_match_passing_ratio team_id player_match_successful_passes player_match_op_xgbuildup_per_possession player_match_op_xgchain player_match_op_passes_into_box player_match_deep_progressions player_match_turnovers player_match_counterpressured_action_fails player_match_passes player_match_key_passes player_match_dispossessions player_match_penalties_won player_match_through_balls team_name player_match_op_passes player_match_dribbles player_match_clearances player_match_forward_passes player_match_np_xg_per_shot player_match_counterpressures player_id player_match_op_xa player_match_op_xgchain_per_possession player_match_minutes player_match_pressured_long_balls player_match_op_f3_sideways_passes player_match_dribbles_faced player_match_np_xg player_match_goals player_match_op_key_passes player_match_aerial_ratio player_match_op_shots player_match_successful_crosses player_match_shots_blocked player_match_op_f3_passes player_match_op_assists player_match_long_ball_ratio account_id player_match_np_shots player_match_challenge_ratio player_match_touches player_match_pressure_regains player_match_crosses_into_box player_match_fouls player_match_sideways_passes player_match_aerials player_match_touches_inside_box player_match_counterpressure_duration_total player_match_successful_aerials player_match_box_cross_ratio player_match_xgbuildup_per_possession player_match_dribbled_past player_match_pressure_duration_total player_match_op_xgbuildup player_match_np_shots_on_target player_match_interceptions player_match_counterpressure_duration_avg player_match_xgchain_per_possession player_match_successful_long_balls player_match_op_f3_backward_passes player_match_xgchain player_match_tackles player_match_assists player_match_sp_xa player_match_aggressive_actions player_name player_match_xa match_id player_match_passes_inside_box player_match_possession player_match_pressured_action_fails player_match_crosses player_match_fouls_won player_match_xgbuildup player_match_backward_passes player_match_unpressured_long_balls player_match_np_goals
0 NaN 10 0.000000 0 NaN NaN 0 0.842105 870 32 0.003191 0.105292 0 0 0 NaN 38 0 0 0 0 Arminia Bielefeld 33 0 0 9 NaN NaN 9194 0.000000 0.003191 94.21667 1 0 0 0.000000 0 0 NaN 0 0 0 0 0 0.600000 48 0 NaN 65 0 0 0 29 0 0 NaN 0 NaN 0.003191 0 NaN 0.105292 0 0 NaN 0.003191 6 0 0.105292 0 0 0.000000 0 Stefan Ortega 0.000000 3772072 0 0.491135 NaN 0 0 0.105292 0 9 0
1 8.0 0 0.033333 0 0.570626 0.0 0 0.812500 870 13 0.003726 0.160582 0 1 3 0.0 16 1 3 0 0 Arminia Bielefeld 10 1 1 0 0.034737 1.0 9210 0.043881 0.007299 91.90000 1 4 0 0.034737 0 1 0.285714 1 0 0 6 0 NaN 48 1 1.0 30 0 0 0 10 7 5 0.327541 2 NaN 0.003726 0 4.565010 0.081964 0 0 0.327541 0.007299 0 2 0.160582 1 0 0.000000 9 Fabian Klos 0.043881 3772072 1 0.491135 0.0 1 1 0.081964 6 0 0
2 7.0 13 0.000000 1 1.795411 0.0 1 0.852941 190 58 0.017993 0.773687 0 3 0 0.0 68 1 0 0 0 Union Berlin 60 0 2 4 NaN 0.0 9164 0.000000 0.017993 94.21667 2 3 0 0.000000 0 0 0.666667 0 0 1 4 0 0.615385 48 0 1.0 122 1 0 2 51 3 0 NaN 2 0.0 0.017993 0 12.567875 0.773687 0 1 NaN 0.019504 8 0 0.838693 2 0 0.043227 11 Christopher Trimmel 0.043227 3772072 0 0.508865 0.0 1 0 0.773687 13 13 0
3 3.0 4 0.013699 1 0.744943 NaN 1 0.777778 870 35 0.002196 0.090022 1 1 1 0.0 45 0 1 0 0 Arminia Bielefeld 40 0 1 18 0.019468 0.0 24343 0.000000 0.002196 94.21667 1 1 0 0.019468 0 0 0.000000 1 0 1 2 0 0.750000 48 1 NaN 73 0 0 0 22 1 1 NaN 0 0.0 0.003043 0 2.234830 0.090022 0 0 NaN 0.003043 3 0 0.124760 0 0 0.000000 3 Jacob Laursen 0.000000 3772072 0 0.491135 0.0 0 1 0.124760 5 4 0
4 14.0 6 0.000000 0 0.592216 NaN 0 0.763158 870 29 0.006048 0.211669 0 1 0 0.0 38 0 2 0 0 Arminia Bielefeld 36 0 1 7 NaN 2.0 9204 0.000000 0.006048 94.21667 1 1 3 0.000000 0 0 0.500000 0 0 0 1 0 1.000000 48 0 0.0 64 1 0 4 29 2 0 0.676610 1 NaN 0.006048 3 8.291025 0.211669 0 2 0.338305 0.006048 6 0 0.211669 0 0 0.000000 18 Manuel Prietl 0.000000 3772072 0 0.491135 0.0 0 1 0.211669 2 6 0

Raw Files

Alternatively, entities can be accessed as python dictionaries serving as an interface to raw jsons and without performing any preprocessing


sb.competitions(fmt="dict")

sb.matches(competition_id=9, season_id=42, fmt="dict")

sb.lineups(match_id=303299, fmt="dict")

sb.events(303299, fmt="dict")

sb.competition_events(
    country="Germany",
    division= "1. Bundesliga",
    season="2019/2020",
    gender="male",
    fmt="dict"
)

sb.frames(3772072, fmt="dict")

sb.competition_frames(
    country="Germany",
    division= "1. Bundesliga",
    season="2021/2022",
    gender="male",
    fmt="dict"
)

sb.player_match_stats(3772072, fmt="dict")

sb.player_season_stats(competition_id=9, season_id=42, fmt="dict")

sb.team_match_stats(3772072, fmt="dict")

sb.team_season_stats(competition_id=9, season_id=42, fmt="dict")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

statsbombpy-1.14.0.tar.gz (32.8 kB view details)

Uploaded Source

Built Distribution

statsbombpy-1.14.0-py3-none-any.whl (16.5 kB view details)

Uploaded Python 3

File details

Details for the file statsbombpy-1.14.0.tar.gz.

File metadata

  • Download URL: statsbombpy-1.14.0.tar.gz
  • Upload date:
  • Size: 32.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for statsbombpy-1.14.0.tar.gz
Algorithm Hash digest
SHA256 225a95301a9f9f3ca478f1df9c67c051e4e9e470e97f223c13d91fc85dbf3650
MD5 4db603c46b8d718f4dc54770cc0d9192
BLAKE2b-256 5610cd15934ed07ba907fddcc0ecc615421953a26584e4c5c201f8170d28d345

See more details on using hashes here.

File details

Details for the file statsbombpy-1.14.0-py3-none-any.whl.

File metadata

  • Download URL: statsbombpy-1.14.0-py3-none-any.whl
  • Upload date:
  • Size: 16.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for statsbombpy-1.14.0-py3-none-any.whl
Algorithm Hash digest
SHA256 bf5e87a477d5c9a105795f190fea03b04988412b49baa15f6f31438953739a19
MD5 a3e88bcd2d0f647fb1406841cf0c81ce
BLAKE2b-256 1aeaacce7c1f80bbbe3c50ac80e911bf6f367e465e4633f1031eb8ca0853a1a2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page