Skip to main content

Metric classes for Statsd

Project description

https://travis-ci.org/farzadghanei/statsd-metrics.svg?branch=master

Metric classes for Statsd and and functionality to create, parse and send Statsd requests (each metric in a single request, or send batch requests).

Metric Classes

Available metrics:

  • Counter

  • Timer

  • Gauge

  • Set

  • GaugeDelta

from statsdmetrics import Counter, Timer

counter = Counter('event.login', 1, 0.2)
counter.to_request() # returns event.login:1|c|@0.2

timer = Timer('db.search.username', 27.4)
timer.to_request() # returns db.search.username:27.4|ms

Parse metrics from a Statsd request

from statsdmetrics import parse_metric_from_request

event_login = parse_metric_from_request('event.login:1|c|@.2')
# event_login is a Counter object with count = 1 and sample_rate = 0.2

mem_usage = parse_metric_from_request('resource.memory:2048|g')
# mem_usage is a Gauge object with value = 2028

Statsd Client

  • client.Client: Default client, sends request on each call using UDP

  • client.BatchClient: Buffers metrics and flushes them in batch requests using UDP

  • client.tcp.TCPClient: Sends request on each call using TCP

  • client.tcp.TCPBatchClient: Buffers metrics and flushes them in batch requests using TCP

Send Statsd requests

from statsdmetrics.client import Client

client = Client("stats.example.org")
client.increment("login")
client.decrement("connections", 2)
client.timing("db.search.username", 3500)
client.gauge("memory", 20480)
client.gauge_delta("memory", -256)
client.set("unique.ip_address", "10.10.10.1")

Sending multiple metrics in batch requests is supported through BatchClient class, either by using an available client as the context manager:

from statsdmetrics.client import Client

client = Client("stats.example.org")
with client.batch_client() as batch_client:
    batch_client.increment("login")
    batch_client.decrement("connections", 2)
    batch_client.timing("db.search.username", 3500)
# now all metrics are flushed automatically in batch requests

or by creating a BatchClient object explicitly:

from statsdmetrics.client import BatchClient

client = BatchClient("stats.example.org")
client.set("unique.ip_address", "10.10.10.1")
client.gauge("memory", 20480)
client.flush() # sends one UDP packet to remote server, carrying both metrics

Installation

pip install statsdmetrics

There are no specific dependencies, it runs on Python 2.7+ (CPython 2.7, 3.2, 3.3 3.4 and 3.5, PyPy 2.6 and PyPy3 2.4, and Jython 2.7 are tested)

However on development (and test) environment mock is required, and distutilazy (or setuptools as a fallback) is used to run the tests.

# on dev/test env
pip install -r requirements-dev.txt

Development

Tests

If you have make available

make test

You can always use the setup.py file

python setup.py test

License

Statsd metrics is released under the terms of the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

statsdmetrics-0.2.1.tar.gz (7.5 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

statsdmetrics-0.2.1-py2.py3-none-any.whl (10.7 kB view details)

Uploaded Python 2Python 3

File details

Details for the file statsdmetrics-0.2.1.tar.gz.

File metadata

  • Download URL: statsdmetrics-0.2.1.tar.gz
  • Upload date:
  • Size: 7.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for statsdmetrics-0.2.1.tar.gz
Algorithm Hash digest
SHA256 ba486d79d35ad9804469c94ce8ae41566e2e544be4a893f6b5b0a1c67e9050ba
MD5 0dce9a32830f80f5a1edf74aa1ab28d2
BLAKE2b-256 0f6e8b1b1582275dcada9d8167ed23b54f865584c9b53dc29bd3f52c289501f3

See more details on using hashes here.

File details

Details for the file statsdmetrics-0.2.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for statsdmetrics-0.2.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 109a75c0b14ceb9edae473d8bd7d29d531a0527ca2c37c7b5e0d761ec32da3fe
MD5 6cfcb70818bcb45d723bb42349e38c3b
BLAKE2b-256 2dba8d19a333e9f0602e82dd559a2699ac47cffd11bac4d18a6ae44862d03a73

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page