Skip to main content

Time series forecasting suite using statistical models

Project description

Nixtla   Tweet  Slack

All Contributors

Statistical ⚡️ Forecast

Lightning fast forecasting with statistical and econometric models

CI Python PyPi conda-nixtla License docs Downloads

StatsForecast offers a collection of widely used univariate time series forecasting models, including automatic ARIMA, ETS, CES, and Theta modeling optimized for high performance using numba. It also includes a large battery of benchmarking models.

Installation

You can install StatsForecast with:

pip install statsforecast

or

conda install -c conda-forge statsforecast

Vist our Installation Guide for further instructions.

Quick Start

Minimal Example

from statsforecast import StatsForecast
from statsforecast.models import AutoARIMA
from statsforecast.utils import AirPassengersDF

df = AirPassengersDF
sf = StatsForecast(
    models = [AutoARIMA(season_length = 12)],
    freq = 'M'
)

sf.fit(df)
sf.predict(h=12, level=[95])

Get Started with this quick guide.

Follow this end-to-end walkthrough for best practices.

Why?

Current Python alternatives for statistical models are slow, inaccurate and don't scale well. So we created a library that can be used to forecast in production environments or as benchmarks. StatsForecast includes an extensive battery of models that can efficiently fit millions of time series.

Features

  • Fastest and most accurate implementations of AutoARIMA, AutoETS, AutoCES, MSTL and Theta in Python.
  • Out-of-the-box compatibility with Spark, Dask, and Ray.
  • Probabilistic Forecasting and Confidence Intervals.
  • Support for exogenous Variables and static covariates.
  • Anomaly Detection.
  • Familiar sklearn syntax: .fit and .predict.

Highlights

  • Inclusion of exogenous variables and prediction intervals for ARIMA.
  • 20x faster than pmdarima.
  • 1.5x faster than R.
  • 500x faster than Prophet.
  • 4x faster than statsmodels.
  • Compiled to high performance machine code through numba.
  • 1,000,000 series in 30 min with ray.
  • Replace FB-Prophet in two lines of code and gain speed and accuracy. Check the experiments here.
  • Fit 10 benchmark models on 1,000,000 series in under 5 min.

Missing something? Please open an issue or write us in Slack

Examples and Guides

📚 End to End Walkthrough: Model training, evaluation and selection for multiple time series

🔎 Anomaly Detection: detect anomalies for time series using in-sample prediction intervals.

👩‍🔬 Cross Validation: robust model’s performance evaluation.

❄️ Multiple Seasonalities: how to forecast data with multiple seasonalities using an MSTL.

🔌 Predict Demand Peaks: electricity load forecasting for detecting daily peaks and reducing electric bills.

📈 Intermittent Demand: forecast series with very few non-zero observations.

🌡️ Exogenous Regressors: like weather or prices

Models

Automatic Forecasting

Automatic forecasting tools search for the best parameters and select the best possible model for a group of time series. These tools are useful for large collections of univariate time series.

Model Point Forecast Probabilistic Forecast Insample fitted values Probabilistic fitted values Exogenous features
AutoARIMA
AutoETS
AutoCES
AutoTheta

ARIMA Family

These models exploit the existing autocorrelations in the time series.

Model Point Forecast Probabilistic Forecast Insample fitted values Probabilistic fitted values Exogenous features
ARIMA
AutoRegressive

Theta Family

Fit two theta lines to a deseasonalized time series, using different techniques to obtain and combine the two theta lines to produce the final forecasts.

Model Point Forecast Probabilistic Forecast Insample fitted values Probabilistic fitted values Exogenous features
Theta
OptimizedTheta
DynamicTheta
DynamicOptimizedTheta

Multiple Seasonalities

Suited for signals with more than one clear seasonality. Useful for low-frequency data like electricity and logs.

Model Point Forecast Probabilistic Forecast Insample fitted values Probabilistic fitted values Exogenous features
MSTL If trend forecaster supports

GARCH and ARCH Models

Suited for modeling time series that exhibit non-constant volatility over time. The ARCH model is a particular case of GARCH.

Model Point Forecast Probabilistic Forecast Insample fitted values Probabilistic fitted values Exogenous features
GARCH
ARCH

Baseline Models

Classical models for establishing baseline.

Model Point Forecast Probabilistic Forecast Insample fitted values Probabilistic fitted values Exogenous features
HistoricAverage
Naive
RandomWalkWithDrift
SeasonalNaive
WindowAverage
SeasonalWindowAverage

Exponential Smoothing

Uses a weighted average of all past observations where the weights decrease exponentially into the past. Suitable for data with clear trend and/or seasonality. Use the SimpleExponential family for data with no clear trend or seasonality.

Model Point Forecast Probabilistic Forecast Insample fitted values Probabilistic fitted values Exogenous features
SimpleExponentialSmoothing
SimpleExponentialSmoothingOptimized
SeasonalExponentialSmoothing
SeasonalExponentialSmoothingOptimized
Holt
HoltWinters

Sparse or Intermittent

Suited for series with very few non-zero observations

Model Point Forecast Probabilistic Forecast Insample fitted values Probabilistic fitted values Exogenous features
ADIDA
CrostonClassic
CrostonOptimized
CrostonSBA
IMAPA
TSB

🔨 How to contribute

See CONTRIBUTING.md.

Citing

@misc{garza2022statsforecast,
    author={Federico Garza, Max Mergenthaler Canseco, Cristian Challú, Kin G. Olivares},
    title = {{StatsForecast}: Lightning fast forecasting with statistical and econometric models},
    year={2022},
    howpublished={{PyCon} Salt Lake City, Utah, US 2022},
    url={https://github.com/Nixtla/statsforecast}
}

Contributors ✨

Thanks goes to these wonderful people (emoji key):

fede
fede

💻 🚧
José Morales
José Morales

💻 🚧
Sugato Ray
Sugato Ray

💻
Jeff Tackes
Jeff Tackes

🐛
darinkist
darinkist

🤔
Alec Helyar
Alec Helyar

💬
Dave Hirschfeld
Dave Hirschfeld

💬
mergenthaler
mergenthaler

💻
Kin
Kin

💻
Yasslight90
Yasslight90

🤔
asinig
asinig

🤔
Philip Gillißen
Philip Gillißen

💻
Sebastian Hagn
Sebastian Hagn

🐛 📖
Han Wang
Han Wang

💻
Ben Jeffrey
Ben Jeffrey

🐛
Beliavsky
Beliavsky

📖
Mariana Menchero García
Mariana Menchero García

💻
Nikhil Gupta
Nikhil Gupta

🐛
JD
JD

🐛
josh attenberg
josh attenberg

💻
JeroenPeterBos
JeroenPeterBos

💻
Jeroen Van Der Donckt
Jeroen Van Der Donckt

💻
Roymprog
Roymprog

📖
Nelson Cárdenas Bolaño
Nelson Cárdenas Bolaño

📖
Kyle Schmaus
Kyle Schmaus

💻
Akmal Soliev
Akmal Soliev

💻
Nick To
Nick To

💻
Kevin Kho
Kevin Kho

💻
Yiben Huang
Yiben Huang

📖
Andrew Gross
Andrew Gross

📖
taniishkaaa
taniishkaaa

📖
Manuel Calzolari
Manuel Calzolari

💻

This project follows the all-contributors specification. Contributions of any kind welcome!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

statsforecast-1.7.8.tar.gz (2.9 MB view details)

Uploaded Source

Built Distributions

statsforecast-1.7.8-cp312-cp312-win_amd64.whl (255.4 kB view details)

Uploaded CPython 3.12 Windows x86-64

statsforecast-1.7.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (315.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

statsforecast-1.7.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (305.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

statsforecast-1.7.8-cp312-cp312-macosx_11_0_arm64.whl (274.2 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

statsforecast-1.7.8-cp312-cp312-macosx_10_13_x86_64.whl (289.0 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

statsforecast-1.7.8-cp311-cp311-win_amd64.whl (254.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

statsforecast-1.7.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (315.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

statsforecast-1.7.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (305.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

statsforecast-1.7.8-cp311-cp311-macosx_11_0_arm64.whl (275.1 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

statsforecast-1.7.8-cp311-cp311-macosx_10_9_x86_64.whl (289.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

statsforecast-1.7.8-cp310-cp310-win_amd64.whl (253.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

statsforecast-1.7.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (314.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

statsforecast-1.7.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (304.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

statsforecast-1.7.8-cp310-cp310-macosx_11_0_arm64.whl (273.9 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

statsforecast-1.7.8-cp310-cp310-macosx_10_9_x86_64.whl (288.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

statsforecast-1.7.8-cp39-cp39-win_amd64.whl (251.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

statsforecast-1.7.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (314.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

statsforecast-1.7.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (305.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

statsforecast-1.7.8-cp39-cp39-macosx_11_0_arm64.whl (274.0 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

statsforecast-1.7.8-cp39-cp39-macosx_10_9_x86_64.whl (288.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

statsforecast-1.7.8-cp38-cp38-win_amd64.whl (253.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

statsforecast-1.7.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (313.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

statsforecast-1.7.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (305.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

statsforecast-1.7.8-cp38-cp38-macosx_11_0_arm64.whl (273.7 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

statsforecast-1.7.8-cp38-cp38-macosx_10_9_x86_64.whl (288.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file statsforecast-1.7.8.tar.gz.

File metadata

  • Download URL: statsforecast-1.7.8.tar.gz
  • Upload date:
  • Size: 2.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for statsforecast-1.7.8.tar.gz
Algorithm Hash digest
SHA256 44a89372e1761bba90ded17ccd6fd3504012d219e8ceb4c453d78be910e92287
MD5 6daef3791c06d330a7f3690805968477
BLAKE2b-256 38ef4f5157b9c1749ec13d12d721bc8af0dda90c5c4f0c75948db31d93b71829

See more details on using hashes here.

File details

Details for the file statsforecast-1.7.8-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for statsforecast-1.7.8-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 1815e702096e5da75add79c81b3cc867954f3a957c921836035a78065f8e720e
MD5 13c2d93138e74aad67301bd5b83ae5d2
BLAKE2b-256 e6ab5de37ea549895b9ee5701ac45bb7aff47ec7838754ab468188af7253b699

See more details on using hashes here.

File details

Details for the file statsforecast-1.7.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsforecast-1.7.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c949af0b8b299bd1cf541de9b718c9f4ad627cd858fbda0a14bc4fd5d390241e
MD5 c37f91e56f2ef42b24e37b03e8239161
BLAKE2b-256 6b6fe70e0f3937ecbe65f353ba3df5385f6996e240fb366d3a2e1cfd7cc2daf4

See more details on using hashes here.

File details

Details for the file statsforecast-1.7.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsforecast-1.7.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6eda1b19e9230925766d2f247ab64d873af09ba0db56d8ddf2705aa78e4d59b1
MD5 6dd2b4d8412a4a67fd58377321a9b0ea
BLAKE2b-256 44d0f96049db657cb1f17f6513dc2bcd4d647ce10dcf2225260b23d1b3210ac7

See more details on using hashes here.

File details

Details for the file statsforecast-1.7.8-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsforecast-1.7.8-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a598bedc662ae892d5ab050352746805a731a8aec511a6771cf03b1f4d76e3f2
MD5 6d65535bc51f0e7f226b54946deb2781
BLAKE2b-256 a5f5e18a4a5d1023159411c0080095b1ee673e6f78493f1ad5c32b2e17ebe1d8

See more details on using hashes here.

File details

Details for the file statsforecast-1.7.8-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for statsforecast-1.7.8-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 33eace24080e559ac410fbed361cabfe688cb2f9b9a2e2f20aca19dcbc20be0d
MD5 3d0ba26f34f1ee03c39ea0d80dd353ca
BLAKE2b-256 0eff908343552251642c8d2dd374e5b909d2c2d16ba6abc60f9d2a24076c65e9

See more details on using hashes here.

File details

Details for the file statsforecast-1.7.8-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for statsforecast-1.7.8-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 da74148ab2e398ad4310c12fa34517477ad20fc49b935f63c330da2e94380c9f
MD5 d6c9f1445519e2b2a2420ab1f7da3fbb
BLAKE2b-256 de7c4e56c0c5aa11f73cebd5e49ec55cc7be6799c559a290d2eac893cef18394

See more details on using hashes here.

File details

Details for the file statsforecast-1.7.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsforecast-1.7.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 84bc52363d66ece211e6d196eb764fceb097384a192031be866bea02f7e62c4d
MD5 2888851d063ab7d722a65261cde1eca1
BLAKE2b-256 8b0afd4477e16c0d9509d503891dbba2baf73f4b17426850c3c02350a18ab049

See more details on using hashes here.

File details

Details for the file statsforecast-1.7.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsforecast-1.7.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 aa02344b08e71497ddc562b023ab627b3703f035fd703dad3e5a0f6e94cb8c7f
MD5 cb8d30462cd98bac75070aa85dc39ca3
BLAKE2b-256 a80f62317fadd4b5d9e1fe0b88d352cbad2e254a5c9ebfbba6d379d2096a8110

See more details on using hashes here.

File details

Details for the file statsforecast-1.7.8-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsforecast-1.7.8-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 725ebea30e9098c812dfbc85dc31a5b459d46d3b81e68212899894770f27648a
MD5 92eed6e6bb9e4554e3ede5f4415e9cdd
BLAKE2b-256 fb8198990339028ee547a1d5b155f411d42b29df5cb6bad80830accb665dad09

See more details on using hashes here.

File details

Details for the file statsforecast-1.7.8-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsforecast-1.7.8-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 737c99fff0e881fb1713e7f38e5d3b523a6451650564706eef91ce647d5a8d74
MD5 41155bec787e7082088166fb370f6687
BLAKE2b-256 b39ef71462cc00622b653bd9d1865b08840140267389f6fe50adcf9c8a5935fe

See more details on using hashes here.

File details

Details for the file statsforecast-1.7.8-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for statsforecast-1.7.8-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e020832403530e5be74f44738d792c043faecc2718e71cc6cf1372f361210f64
MD5 665a671b70af21683eb5853b5cb368f3
BLAKE2b-256 2f9c9bc8b708ddf7ba852448ea821cf6ba04f9f482462bd0b6f9bd0d4c00e5f8

See more details on using hashes here.

File details

Details for the file statsforecast-1.7.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsforecast-1.7.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 892413f04f48c6036ebefb759cf676b0cf98ce6079c3f1a55795eba3a06d20b2
MD5 760364745a5c6c467d02a19dc7535488
BLAKE2b-256 87dda5fc68cc69a1c81e545d44ba74fd0c6a4e3a69db27ef7fb35e10d6de1ca0

See more details on using hashes here.

File details

Details for the file statsforecast-1.7.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsforecast-1.7.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 12f1bea7e1a23ca425476dfcf17dc56a44462ce0284f8c6f82c65b49c5c23b0b
MD5 09ad4991e3efccc82d7e8100f38e87e4
BLAKE2b-256 a535e662883ae62829f921cd93f7007b955206c2c46006f51ecd07ffa108ee84

See more details on using hashes here.

File details

Details for the file statsforecast-1.7.8-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsforecast-1.7.8-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a205baeac2db8afae70a67498c9ec89762525d88c741e323af5a539e4260cc61
MD5 b9aba6ade8f2c935f771a51b6dc2ade7
BLAKE2b-256 6cc5d1891f334d500647ab05e9e5dea0b89724097d859b031051c7822d75c6e3

See more details on using hashes here.

File details

Details for the file statsforecast-1.7.8-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsforecast-1.7.8-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 79e5683a43265edd55d71b31bc602b29e8e38e61d0c9ef4b9000056ab6b8534e
MD5 2ed3ec3f9382b71ab2b4d28dbbf9c366
BLAKE2b-256 240559d9bfe4586f006ac5d06d7a6e1760f6ca5f31208bace43b64eff55c647a

See more details on using hashes here.

File details

Details for the file statsforecast-1.7.8-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for statsforecast-1.7.8-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1a4f6364e3542109a46efc4c67f28a2172e0b3805b4001595207a0f8fa08c715
MD5 08aa74d1d1385adfc34c9888392fa3b1
BLAKE2b-256 10dd8f16affb59ff29693f94e106e414e42f029bef48ca5aa842f4d0822f0d51

See more details on using hashes here.

File details

Details for the file statsforecast-1.7.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsforecast-1.7.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 90df1972fcc6fe945a0e80398174f9a88fefc3ef1980e24a045e7029e9cf1eb2
MD5 4e936289cd51a07f1613c1983aac7ede
BLAKE2b-256 eebf95e92580072ed8cc0998beac933425c9dc78faf0f0998686cf8303e3e24d

See more details on using hashes here.

File details

Details for the file statsforecast-1.7.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsforecast-1.7.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 77f4d9d32c5c4df65720a71721af405f4d348f341ade89d1cabbdc7f02af73a9
MD5 1c9785455ef6dd2dc12ad68a64edc6b8
BLAKE2b-256 3d06061e189b0d0d82f257f635f6a3f00a39dea962dd13a58e2674fae6275d20

See more details on using hashes here.

File details

Details for the file statsforecast-1.7.8-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsforecast-1.7.8-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b51895e1dd88ab8abe0c43135822e4f5eafd0a903387407c21eda9e610cf00af
MD5 7f5662352c4ab68e37c68c20118816ab
BLAKE2b-256 f13b8a2f0ec9ff5295e5541ed7ebb0587a3aa16c6310b5ea4b093354cda2fbfd

See more details on using hashes here.

File details

Details for the file statsforecast-1.7.8-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsforecast-1.7.8-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 34351e94006ad83fac45a78667731923b131bed5149b9f96c6bf249117b7612e
MD5 825d93273da12e87090d31a38e6725b2
BLAKE2b-256 9bb6e347ad8203a6157d2846ceb0b246d46b58d7c14b23030f32e899b0bef4e3

See more details on using hashes here.

File details

Details for the file statsforecast-1.7.8-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for statsforecast-1.7.8-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 be8383b621bd5805ae003bfacded6c9eb3bb156d6948c27077cedd58314b862f
MD5 a6bc5f24845ada5141019480e187874a
BLAKE2b-256 fe4a351eff0c4b3b3ada7e5d00d0a64937d3151fb7a8c60052a17c0c951dd58a

See more details on using hashes here.

File details

Details for the file statsforecast-1.7.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsforecast-1.7.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d24b2a1f8e88bbeda3905bae7adc9ccffce40bbf10b64bd1121600fed958b9fa
MD5 9562e607ae603d16d6a13580b841a907
BLAKE2b-256 c7e1097d1ef07733808ee5f73843334ab977dbbf9f231c91be2f5e2d94ec0851

See more details on using hashes here.

File details

Details for the file statsforecast-1.7.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsforecast-1.7.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6fa9babfd8fb046912d2dde747f79f1957c20b717fc65a9f91c9994d8db6a737
MD5 1eeabfd816b3c2afd8bccd506d3b708f
BLAKE2b-256 3eaf570719df38f8a26a1b992ddb67710cf155d35ea4c10fa6a8fa63e436ab09

See more details on using hashes here.

File details

Details for the file statsforecast-1.7.8-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsforecast-1.7.8-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 785c08a87bacbb4613b8e5d8273f6b31e2e8f3752f651bd695219d43656b6738
MD5 3830555ea949c7916314eab7f385c3eb
BLAKE2b-256 0d555baad59eeda756bd17d972dfc55b8716821355977df7a96991fb9e1f0838

See more details on using hashes here.

File details

Details for the file statsforecast-1.7.8-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsforecast-1.7.8-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 656f9bbd328557aec776c8ce90f1a0c7601b4ca391454eae348c24ae88f7a1d5
MD5 604dc9b2944b1a6a3c954ca53e6cf2c9
BLAKE2b-256 c8b6bdcc02a7949dd5389065433dcc28cb5f99ed1401ba57e95eb52e9085ce95

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page