Skip to main content

Statistical computations and models for Python

Project description

Statsmodels logo

PyPI Version Conda Version License Azure CI Build Status Codecov Coverage Coveralls Coverage PyPI - Downloads Conda downloads

About statsmodels

statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics and estimation and inference for statistical models.

Documentation

The documentation for the latest release is at

https://www.statsmodels.org/stable/

The documentation for the development version is at

https://www.statsmodels.org/dev/

Recent improvements are highlighted in the release notes

https://www.statsmodels.org/stable/release/

Backups of documentation are available at https://statsmodels.github.io/stable/ and https://statsmodels.github.io/dev/.

Main Features

  • Linear regression models:

    • Ordinary least squares

    • Generalized least squares

    • Weighted least squares

    • Least squares with autoregressive errors

    • Quantile regression

    • Recursive least squares

  • Mixed Linear Model with mixed effects and variance components

  • GLM: Generalized linear models with support for all of the one-parameter exponential family distributions

  • Bayesian Mixed GLM for Binomial and Poisson

  • GEE: Generalized Estimating Equations for one-way clustered or longitudinal data

  • Discrete models:

    • Logit and Probit

    • Multinomial logit (MNLogit)

    • Poisson and Generalized Poisson regression

    • Negative Binomial regression

    • Zero-Inflated Count models

  • RLM: Robust linear models with support for several M-estimators.

  • Time Series Analysis: models for time series analysis

    • Complete StateSpace modeling framework

      • Seasonal ARIMA and ARIMAX models

      • VARMA and VARMAX models

      • Dynamic Factor models

      • Unobserved Component models

    • Markov switching models (MSAR), also known as Hidden Markov Models (HMM)

    • Univariate time series analysis: AR, ARIMA

    • Vector autoregressive models, VAR and structural VAR

    • Vector error correction model, VECM

    • exponential smoothing, Holt-Winters

    • Hypothesis tests for time series: unit root, cointegration and others

    • Descriptive statistics and process models for time series analysis

  • Survival analysis:

    • Proportional hazards regression (Cox models)

    • Survivor function estimation (Kaplan-Meier)

    • Cumulative incidence function estimation

  • Multivariate:

    • Principal Component Analysis with missing data

    • Factor Analysis with rotation

    • MANOVA

    • Canonical Correlation

  • Nonparametric statistics: Univariate and multivariate kernel density estimators

  • Datasets: Datasets used for examples and in testing

  • Statistics: a wide range of statistical tests

    • diagnostics and specification tests

    • goodness-of-fit and normality tests

    • functions for multiple testing

    • various additional statistical tests

  • Imputation with MICE, regression on order statistic and Gaussian imputation

  • Mediation analysis

  • Graphics includes plot functions for visual analysis of data and model results

  • I/O

    • Tools for reading Stata .dta files, but pandas has a more recent version

    • Table output to ascii, latex, and html

  • Miscellaneous models

  • Sandbox: statsmodels contains a sandbox folder with code in various stages of development and testing which is not considered “production ready”. This covers among others

    • Generalized method of moments (GMM) estimators

    • Kernel regression

    • Various extensions to scipy.stats.distributions

    • Panel data models

    • Information theoretic measures

How to get it

The main branch on GitHub is the most up to date code

https://www.github.com/statsmodels/statsmodels

Source download of release tags are available on GitHub

https://github.com/statsmodels/statsmodels/tags

Binaries and source distributions are available from PyPi

https://pypi.org/project/statsmodels/

Binaries can be installed in Anaconda

conda install statsmodels

Getting the latest code

Installing the most recent nightly wheel

The most recent nightly wheel can be installed using pip.

python -m pip install -i https://pypi.anaconda.org/scientific-python-nightly-wheels/simple statsmodels --upgrade --use-deprecated=legacy-resolver

Installing from sources

See INSTALL.txt for requirements or see the documentation

https://statsmodels.github.io/dev/install.html

Contributing

Contributions in any form are welcome, including:

  • Documentation improvements

  • Additional tests

  • New features to existing models

  • New models

https://www.statsmodels.org/stable/dev/test_notes

for instructions on installing statsmodels in editable mode.

License

Modified BSD (3-clause)

Discussion and Development

Discussions take place on the mailing list

https://groups.google.com/group/pystatsmodels

and in the issue tracker. We are very interested in feedback about usability and suggestions for improvements.

Bug Reports

Bug reports can be submitted to the issue tracker at

https://github.com/statsmodels/statsmodels/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

statsmodels-0.14.4.tar.gz (20.4 MB view details)

Uploaded Source

Built Distributions

statsmodels-0.14.4-cp313-cp313-win_amd64.whl (9.8 MB view details)

Uploaded CPython 3.13 Windows x86-64

statsmodels-0.14.4-cp313-cp313-musllinux_1_2_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

statsmodels-0.14.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

statsmodels-0.14.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.3 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

statsmodels-0.14.4-cp313-cp313-macosx_11_0_arm64.whl (9.9 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

statsmodels-0.14.4-cp313-cp313-macosx_10_13_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

statsmodels-0.14.4-cp312-cp312-win_amd64.whl (9.8 MB view details)

Uploaded CPython 3.12 Windows x86-64

statsmodels-0.14.4-cp312-cp312-musllinux_1_2_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

statsmodels-0.14.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

statsmodels-0.14.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

statsmodels-0.14.4-cp312-cp312-macosx_11_0_arm64.whl (9.9 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

statsmodels-0.14.4-cp312-cp312-macosx_10_13_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

statsmodels-0.14.4-cp311-cp311-win_amd64.whl (9.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

statsmodels-0.14.4-cp311-cp311-musllinux_1_2_x86_64.whl (11.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

statsmodels-0.14.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

statsmodels-0.14.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

statsmodels-0.14.4-cp311-cp311-macosx_11_0_arm64.whl (9.9 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

statsmodels-0.14.4-cp311-cp311-macosx_10_9_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

statsmodels-0.14.4-cp310-cp310-win_amd64.whl (9.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

statsmodels-0.14.4-cp310-cp310-musllinux_1_2_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

statsmodels-0.14.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

statsmodels-0.14.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

statsmodels-0.14.4-cp310-cp310-macosx_11_0_arm64.whl (9.9 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

statsmodels-0.14.4-cp310-cp310-macosx_10_9_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

statsmodels-0.14.4-cp39-cp39-win_amd64.whl (9.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

statsmodels-0.14.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

statsmodels-0.14.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

statsmodels-0.14.4-cp39-cp39-macosx_11_0_arm64.whl (9.9 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

statsmodels-0.14.4-cp39-cp39-macosx_10_9_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file statsmodels-0.14.4.tar.gz.

File metadata

  • Download URL: statsmodels-0.14.4.tar.gz
  • Upload date:
  • Size: 20.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for statsmodels-0.14.4.tar.gz
Algorithm Hash digest
SHA256 5d69e0f39060dc72c067f9bb6e8033b6dccdb0bae101d76a7ef0bcc94e898b67
MD5 38acb6af5decb5abea4721b6481ddb1b
BLAKE2b-256 1f3b963a015dd8ea17e10c7b0e2f14d7c4daec903baf60a017e756b57953a4bf

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.4-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.4-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 81030108d27aecc7995cac05aa280cf8c6025f6a6119894eef648997936c2dd0
MD5 fcbb3bf62f28401cfa4cc33c00b94e56
BLAKE2b-256 1debcb8b01f5edf8f135eb3d0553d159db113a35b2948d0e51eeb735e7ae09ea

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.4-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.4-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e31b95ac603415887c9f0d344cb523889cf779bc52d68e27e2d23c358958fec7
MD5 8158ec591352354216427d5cba522011
BLAKE2b-256 4f7667747e49dc758daae06f33aad8247b718cd7d224f091d2cd552681215bb2

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1322286a7bfdde2790bf72d29698a1b76c20b8423a55bdcd0d457969d0041f72
MD5 36963dbd28a52955d00b882eef915dab
BLAKE2b-256 fe2a55c5b5c5e5124a202ea3fe0bcdbdeceaf91b4ec6164b8434acb9dd97409c

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 91341cbde9e8bea5fb419a76e09114e221567d03f34ca26e6d67ae2c27d8fe3c
MD5 f1fd6597efc0d5d5c9099fb4ff98d3c2
BLAKE2b-256 d1973380ca6d8fd66cfb3d12941e472642f26e781a311c355a4e97aab2ed0216

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.4-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.4-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 df4f7864606fa843d7e7c0e6af288f034a2160dba14e6ccc09020a3cf67cb092
MD5 dc58cf1b6118625e14605053eeef7fea
BLAKE2b-256 fac0ee6e8ed35fc1ca9c7538c592f4974547bf72274bc98db1ae4a6e87481a83

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.4-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.4-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 b5a24f5d2c22852d807d2b42daf3a61740820b28d8381daaf59dcb7055bf1a79
MD5 2ae54b059bc506d8de0a2ea792f445ee
BLAKE2b-256 31f82662e6a101315ad336f75168fa9bac71f913ebcb92a6be84031d84a0f21f

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.4-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.4-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 7f7917a51766b4e074da283c507a25048ad29a18e527207883d73535e0dc6184
MD5 f696e6226e34ec25d45443262291c150
BLAKE2b-256 599ae466a1b887a1441141e52dbcc98152f013d85076576da6eed2357f2016ae

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.4-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.4-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 bb695c2025d122a101c2aca66d2b78813c321b60d3a7c86bb8ec4467bb53b0f9
MD5 77a527c6e75823c6008769c47b914fac
BLAKE2b-256 810c2453eec3ac25e300847d9ed97f41156de145e507391ecb5ac989e111e525

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4bbb150620b53133d6cd1c5d14c28a4f85701e6c781d9b689b53681effaa655f
MD5 65b7fe940ed3f3c599f0e1dd0e4ce66f
BLAKE2b-256 fae160a652f18996a40a7410aeb7eb476c18da8a39792c7effe67f06883e9852

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ab5e6312213b8cfb9dca93dd46a0f4dccb856541f91d3306227c3d92f7659245
MD5 26d147ca6e2f218e1d1550421b8af9a5
BLAKE2b-256 e0772440d551eaf27f9c1d3650e13b3821a35ad5b21d3a19f62fb302af9203e8

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.4-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.4-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 17672b30c6b98afe2b095591e32d1d66d4372f2651428e433f16a3667f19eabb
MD5 8e78a10632552a72c8c609c367c30cf3
BLAKE2b-256 67d8ac30cf4cf97adaa48548be57e7cf02e894f31b45fd55bf9213358d9781c9

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.4-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.4-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 5221dba7424cf4f2561b22e9081de85f5bb871228581124a0d1b572708545199
MD5 420e44dc1207e64100ba8db24420e11d
BLAKE2b-256 f599654fd41a9024643ee70b239e5ebc987bf98ce9fc2693bd550bee58136564

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.4-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 a6087ecb0714f7c59eb24c22781491e6f1cfffb660b4740e167625ca4f052056
MD5 cf829481e44d96990c57f00783ac7a24
BLAKE2b-256 4be4f9e96896278308e17dfd4f60a84826c48117674c980234ee38f59ab28a12

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.4-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.4-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d9c8fa28dfd75753d9cf62769ba1fecd7e73a0be187f35cc6f54076f98aa3f3f
MD5 e6971b47a7ad85c25bccdff64f680a4b
BLAKE2b-256 4bc647549345d32da1530a819a3699f6f34f9f70733a245eeb29f5e05e53f362

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e332c2d9b806083d1797231280602340c5c913f90d4caa0213a6a54679ce9331
MD5 8a4dae6ff33415d7ea002ec8733f4464
BLAKE2b-256 9d4fa96e682f82b675e4a6f3de8ad990587d8b1fde500a630a2aabcaabee11d8

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 aa74aaa26eaa5012b0a01deeaa8a777595d0835d3d6c7175f2ac65435a7324d2
MD5 3b5effa391df7f96714fd1e816663f57
BLAKE2b-256 b1f291c70a3b4a3e416f76ead61b04c87bc60080d634d7fa2ab893976bdd86fa

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f5f537f7d000de4a1708c63400755152b862cd4926bb81a86568e347c19c364b
MD5 53f2279146c3c31d9f457e3b952c0d6c
BLAKE2b-256 070b9a0818be42f6689ebdc7a2277ea984d6299f0809d0e0277128df4f7dc606

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5ed7e118e6e3e02d6723a079b8c97eaadeed943fa1f7f619f7148dfc7862670f
MD5 2e610d649ff1a76a6d9b9ae1dbe28dae
BLAKE2b-256 4888326f5f689e69d9c47a68a22ffdd20a6ea6410b53918f9a8e63380dfc181c

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.4-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9729642884147ee9db67b5a06a355890663d21f76ed608a56ac2ad98b94d201a
MD5 448e2ff29327e96b6a82f2a271602f4c
BLAKE2b-256 5cf9205130cceeda0eebd5a1a58c04e060c2f87a1d63cbbe37a9caa0fcb50c68

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.4-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.4-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 3bb2e580d382545a65f298589809af29daeb15f9da2eb252af8f79693e618abc
MD5 af7ff14b65b78581b6e4ff0e12cb983b
BLAKE2b-256 3564df81426924fcc48a0402534efa96cde13275629ae52f123189d16c4b75ff

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 631bb52159117c5da42ba94bd94859276b68cab25dc4cac86475bc24671143bc
MD5 64a1b35b41de22ccc1a661b13b45275b
BLAKE2b-256 7844d72c634211797ed07dd8c63ced4ae11debd7a40b24ee80e79346a526194f

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2a337b731aa365d09bb0eab6da81446c04fde6c31976b1d8e3d3a911f0f1e07b
MD5 bc3a760bb57d5c199b9f5b17b877c555
BLAKE2b-256 936ab86f8c9b799dc93e5b4a3267eb809843e6328e34248a53496b96f50d732e

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 46ac7ddefac0c9b7b607eed1d47d11e26fe92a1bc1f4d9af48aeed4e21e87981
MD5 c9a4b976901f97b79edf406da986e4b0
BLAKE2b-256 baa52f09ab918296e534ea5d132e90efac51ae12ff15992d77539bbfca1158fa

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7a62f1fc9086e4b7ee789a6f66b3c0fc82dd8de1edda1522d30901a0aa45e42b
MD5 63639a8f9956ff5f0100bffb1cf65b5d
BLAKE2b-256 af2c23bf5ad9e8a77c0c8d9750512bff89e32154dea91998114118e0e147ae67

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.4-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8286f69a5e1d0e0b366ffed5691140c83d3efc75da6dbf34a3d06e88abfaaab6
MD5 2892c423f838d79a67202e338f360f46
BLAKE2b-256 f91bf7c77e5a8c4aba97bca8c730cf4087b102f1cc796d9b71e3430dc31f9e57

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6f43da7957e00190104c5dd0f661bfc6dfc68b87313e3f9c4dbd5e7d222e0aeb
MD5 ff6cfcdc60475a6dd778f3f03a77e368
BLAKE2b-256 688bc640e4a243b59fc75e566ff3509ae55fb6cd4535643494be834c7d69c25d

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6e9ddefba1d4e1107c1f20f601b0581421ea3ad9fd75ce3c2ba6a76b6dc4682c
MD5 06634723fd27a69e0a8854d7a3ebc598
BLAKE2b-256 336f44a38bbef8a9641e02e36ad46ca27b43ff26161fe7292995f89306ce964c

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.4-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.4-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d330da34f59f1653c5193f9fe3a3a258977c880746db7f155fc33713ea858db5
MD5 a30c849a8662029d75bedfe6640ccd17
BLAKE2b-256 dc02df44d1a73368fd0c0618e3169e7649303e6adb3ce96a429b617549f87165

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4793b01b7a5f5424f5a1dbcefc614c83c7608aa2b035f087538253007c339d5d
MD5 2b94f83e9d89c28ca60a2acb8b640bc7
BLAKE2b-256 195e6ed84430ca3133507a8e37446e94f0a9cb45a54b412f600fd8152431cff5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page