Skip to main content

Statistical computations and models for Python

Project description

Travis Build Status Azure CI Build Status Appveyor Build Status Coveralls Coverage

About statsmodels

statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics and estimation and inference for statistical models.

Documentation

The documentation for the latest release is at

https://www.statsmodels.org/stable/

The documentation for the development version is at

https://www.statsmodels.org/dev/

Recent improvements are highlighted in the release notes

https://www.statsmodels.org/stable/release/version0.9.html

Backups of documentation are available at https://statsmodels.github.io/stable/ and https://statsmodels.github.io/dev/.

Main Features

  • Linear regression models:

    • Ordinary least squares

    • Generalized least squares

    • Weighted least squares

    • Least squares with autoregressive errors

    • Quantile regression

    • Recursive least squares

  • Mixed Linear Model with mixed effects and variance components

  • GLM: Generalized linear models with support for all of the one-parameter exponential family distributions

  • Bayesian Mixed GLM for Binomial and Poisson

  • GEE: Generalized Estimating Equations for one-way clustered or longitudinal data

  • Discrete models:

    • Logit and Probit

    • Multinomial logit (MNLogit)

    • Poisson and Generalized Poisson regression

    • Negative Binomial regression

    • Zero-Inflated Count models

  • RLM: Robust linear models with support for several M-estimators.

  • Time Series Analysis: models for time series analysis

    • Complete StateSpace modeling framework

      • Seasonal ARIMA and ARIMAX models

      • VARMA and VARMAX models

      • Dynamic Factor models

      • Unobserved Component models

    • Markov switching models (MSAR), also known as Hidden Markov Models (HMM)

    • Univariate time series analysis: AR, ARIMA

    • Vector autoregressive models, VAR and structural VAR

    • Vector error correction modle, VECM

    • exponential smoothing, Holt-Winters

    • Hypothesis tests for time series: unit root, cointegration and others

    • Descriptive statistics and process models for time series analysis

  • Survival analysis:

    • Proportional hazards regression (Cox models)

    • Survivor function estimation (Kaplan-Meier)

    • Cumulative incidence function estimation

  • Multivariate:

    • Principal Component Analysis with missing data

    • Factor Analysis with rotation

    • MANOVA

    • Canonical Correlation

  • Nonparametric statistics: Univariate and multivariate kernel density estimators

  • Datasets: Datasets used for examples and in testing

  • Statistics: a wide range of statistical tests

    • diagnostics and specification tests

    • goodness-of-fit and normality tests

    • functions for multiple testing

    • various additional statistical tests

  • Imputation with MICE, regression on order statistic and Gaussian imputation

  • Mediation analysis

  • Graphics includes plot functions for visual analysis of data and model results

  • I/O

    • Tools for reading Stata .dta files, but pandas has a more recent version

    • Table output to ascii, latex, and html

  • Miscellaneous models

  • Sandbox: statsmodels contains a sandbox folder with code in various stages of development and testing which is not considered “production ready”. This covers among others

    • Generalized method of moments (GMM) estimators

    • Kernel regression

    • Various extensions to scipy.stats.distributions

    • Panel data models

    • Information theoretic measures

How to get it

The master branch on GitHub is the most up to date code

https://www.github.com/statsmodels/statsmodels

Source download of release tags are available on GitHub

https://github.com/statsmodels/statsmodels/tags

Binaries and source distributions are available from PyPi

https://pypi.org/project/statsmodels/

Binaries can be installed in Anaconda

conda install statsmodels

Installing from sources

See INSTALL.txt for requirements or see the documentation

https://statsmodels.github.io/dev/install.html

Contributing

Contributions in any form are welcome, including:

  • Documentation improvements

  • Additional tests

  • New features to existing models

  • New models

https://statsmodels.github.io/dev/test_notes.html

for instructions on installing statsmodels in editable mode.

License

Modified BSD (3-clause)

Discussion and Development

Discussions take place on the mailing list

https://groups.google.com/group/pystatsmodels

and in the issue tracker. We are very interested in feedback about usability and suggestions for improvements.

Bug Reports

Bug reports can be submitted to the issue tracker at

https://github.com/statsmodels/statsmodels/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

statsmodels-0.11.0.tar.gz (15.4 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

statsmodels-0.11.0-cp38-none-win_amd64.whl (8.3 MB view details)

Uploaded CPython 3.8Windows x86-64

statsmodels-0.11.0-cp38-none-win32.whl (7.8 MB view details)

Uploaded CPython 3.8Windows x86

statsmodels-0.11.0-cp38-cp38-manylinux1_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.8

statsmodels-0.11.0-cp38-cp38-manylinux1_i686.whl (8.2 MB view details)

Uploaded CPython 3.8

statsmodels-0.11.0-cp38-cp38-macosx_10_9_x86_64.whl (8.5 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

statsmodels-0.11.0-cp37-none-win_amd64.whl (8.2 MB view details)

Uploaded CPython 3.7Windows x86-64

statsmodels-0.11.0-cp37-none-win32.whl (7.7 MB view details)

Uploaded CPython 3.7Windows x86

statsmodels-0.11.0-cp37-cp37m-manylinux1_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.7m

statsmodels-0.11.0-cp37-cp37m-manylinux1_i686.whl (8.2 MB view details)

Uploaded CPython 3.7m

statsmodels-0.11.0-cp37-cp37m-macosx_10_9_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

statsmodels-0.11.0-cp36-none-win_amd64.whl (8.2 MB view details)

Uploaded CPython 3.6Windows x86-64

statsmodels-0.11.0-cp36-none-win32.whl (7.7 MB view details)

Uploaded CPython 3.6Windows x86

statsmodels-0.11.0-cp36-cp36m-manylinux1_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.6m

statsmodels-0.11.0-cp36-cp36m-manylinux1_i686.whl (8.2 MB view details)

Uploaded CPython 3.6m

statsmodels-0.11.0-cp36-cp36m-macosx_10_9_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.6mmacOS 10.9+ x86-64

statsmodels-0.11.0-cp35-none-win_amd64.whl (8.1 MB view details)

Uploaded CPython 3.5Windows x86-64

statsmodels-0.11.0-cp35-none-win32.whl (7.6 MB view details)

Uploaded CPython 3.5Windows x86

statsmodels-0.11.0-cp35-cp35m-manylinux1_x86_64.whl (8.6 MB view details)

Uploaded CPython 3.5m

statsmodels-0.11.0-cp35-cp35m-manylinux1_i686.whl (8.2 MB view details)

Uploaded CPython 3.5m

statsmodels-0.11.0-cp35-cp35m-macosx_10_6_intel.whl (8.3 MB view details)

Uploaded CPython 3.5mmacOS 10.6+ Intel (x86-64, i386)

File details

Details for the file statsmodels-0.11.0.tar.gz.

File metadata

  • Download URL: statsmodels-0.11.0.tar.gz
  • Upload date:
  • Size: 15.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0.post20200106 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.0.tar.gz
Algorithm Hash digest
SHA256 0a8ee8fc091d9ef1db68f01e6e0079acc0f41671dfbac463131939ca573f8c71
MD5 2b81947c22b6101458611c268e1611a7
BLAKE2b-256 531cb83f6a4632b502a20b0f83bc5c25ebfa03eebd00efe9b45fcdcde1a0ab40

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.0-cp38-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.11.0-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 8.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0.post20200106 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 414d423e804769bc6959ae57dc36595976fb12732e7c3ed02bdc45e970592120
MD5 607212d14f0a41c324a15fb6939360b9
BLAKE2b-256 73f1168475731498a7732ba208df717c87a3902961dcdef25599e6fda3575d9f

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.0-cp38-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.11.0-cp38-none-win32.whl
  • Upload date:
  • Size: 7.8 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0.post20200106 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 64fee746d1089808cbbbcc377910e93dce21646aa0e67fa7d54ee488df545524
MD5 4db9b6e93d352308e6bcca293022c89c
BLAKE2b-256 33de5943eb3b2d1ece6710fc4ddf992992405ddb0b2f61a16efda79b7b9d124a

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.11.0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 8.7 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0.post20200106 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 70bba2b4ce256e5b6d9193cb9ec5e7ebafc96f6334e01248eeddaa62ba6ef60d
MD5 ff1fea1edb18ca9627a32c015be069ab
BLAKE2b-256 35bb9ec5b0bcb1aa8f0a1a9416cd06d5e90c73b153ecae64f3307abb49f1863c

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.0-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: statsmodels-0.11.0-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 8.2 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0.post20200106 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.0-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 13e35799cd86ccbb9e94941b7199c75f7f5194ce3b36a11cb5af8ae8b791301c
MD5 0e8039d9e51332c7dc8064ee25d7e57e
BLAKE2b-256 cf76bb6cdae1c10577fffa87df72fdf12388ac6f9c5a1a1c526da91b0c0fd6ad

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.11.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 8.5 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0.post20200106 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5c135ce37036e3791c229d30a13475ba0fb868015fdbd0a1878261b48026ba76
MD5 c03fc7a7a0871854ffb0469487f1fbf3
BLAKE2b-256 c6c8f620ee78110170e2c4d014eed15d6436984f25f7ff71435820f5d89f478b

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.0-cp37-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.11.0-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 8.2 MB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0.post20200106 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 9be4907a8b8ac8d0e1dd143c905faf9c28a4072ed2b0dfcc87aca50aff9bfe6f
MD5 155da01c5db845189229b77d72765a41
BLAKE2b-256 fe47b71dc57d454a6df149307bfae9908bdbdfcddf967e2f336482df8327da18

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.0-cp37-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.11.0-cp37-none-win32.whl
  • Upload date:
  • Size: 7.7 MB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0.post20200106 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.0-cp37-none-win32.whl
Algorithm Hash digest
SHA256 c8319b91f5892f36debefc4c259ef52457a2ce0a0b4486f5f999ad8d45977767
MD5 0e8706883385d7d448b54d8a316ac582
BLAKE2b-256 fd6ca73abc6ac29cb3e35b64ad97b0b34f6929017dc18287c097440f7e379764

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.11.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 8.7 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0.post20200106 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1c3591b8d34240447b54936c360d1556904c81058b10b2a28092267af683bd4f
MD5 b55f5b32cbf32ab1828eb0e02efb84d3
BLAKE2b-256 4da6685d3ed1e1de53d2c19f8dd76ac03cbd144302a9ab59a743308d69aba3c9

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.0-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: statsmodels-0.11.0-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 8.2 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0.post20200106 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.0-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 e213c84f0f32b984305855169344d53d594a09bce159a8699967ff592ee171a7
MD5 96eff23a5578dd57d0545899717fd9a6
BLAKE2b-256 2a2c3581112a24f331e4449bbe431e9f7583385cf7e71919139dd36d7e9ddf74

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.11.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 8.4 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0.post20200106 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 67224a71c8c5fbf994d59198c10caa28eb6436dd4518b54468901bc6e91cdbfb
MD5 9488024a0a6b60a22ce3fd7c359546b2
BLAKE2b-256 a1475a9d61b49560986d5e93b873c8f30acbbad9c18ab1ea203a823dda411f19

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.0-cp36-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.11.0-cp36-none-win_amd64.whl
  • Upload date:
  • Size: 8.2 MB
  • Tags: CPython 3.6, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0.post20200106 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.0-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 c8fe2a8d014c130dbacf49ef2f186404699d2aeb1cb8ead92d6a5779b1dd007c
MD5 cd41fbc46433425c87f8f85a8a665da9
BLAKE2b-256 092edf5b3e9096e127fa0f8e3230ec7c1a384fe9846f89a32c43b1d7cabeae88

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.0-cp36-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.11.0-cp36-none-win32.whl
  • Upload date:
  • Size: 7.7 MB
  • Tags: CPython 3.6, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0.post20200106 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.0-cp36-none-win32.whl
Algorithm Hash digest
SHA256 4fb440b25dff41ee6df21e6cf83063aec669313fea799c9f2cb4b9204723e79e
MD5 8e78cebd77497dcba980078fc4030e6b
BLAKE2b-256 aae3d29da4e60ef6b6146131b28a9bc6ac6251be66b2f5b35a76d2d121c89d0f

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.11.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 8.7 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0.post20200106 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1840b899a4483b520531d0b731fb57e11a9251e2ed6c471dda0e77716f7b7bd6
MD5 3b4bd75a42cebfb7d655f54acaa42401
BLAKE2b-256 e2bf134d0f9b4fa62b830dcf7ed0567d4964f0a7fae12862ff252748541a4c94

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: statsmodels-0.11.0-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 8.2 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0.post20200106 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 b1d01224b761c2d1fae2a89afb9ef039c7a63a6882f602128652baea437188f5
MD5 92bdd985d4c3b0edf29c648f8f07b7fa
BLAKE2b-256 48eadf8a37b6801d79f33b8e18bf4e170149968138cf3f38d56df0ce0c59f2f1

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.11.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 8.4 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0.post20200106 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 28b869039bb0f905f81343e3c5f1a13a58ef7d758c4a5f60b9b469921dbcda6a
MD5 5ce21b3e71f6fad16707e732d44f0add
BLAKE2b-256 59f81571d976e038f7677573c1dc1992f79589c7183563e014bfefc8408bdecc

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.0-cp35-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.11.0-cp35-none-win_amd64.whl
  • Upload date:
  • Size: 8.1 MB
  • Tags: CPython 3.5, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0.post20200106 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.0-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 d0cf4680939f34898c820f9b310cad05c4d7fa3d17d078eca3928a933331abd8
MD5 06b83b8062f47cb64e260651ba3aa8b4
BLAKE2b-256 5d7df91b8aae5e04fac7305318f16acbf40c1de5d5d004f0eb5f6d1d9ef63de3

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.0-cp35-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.11.0-cp35-none-win32.whl
  • Upload date:
  • Size: 7.6 MB
  • Tags: CPython 3.5, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0.post20200106 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.0-cp35-none-win32.whl
Algorithm Hash digest
SHA256 70fd072beae7403343783d9850190052a5fa83029c4c5806429d8ee0b919d7b7
MD5 553b561c3f5200bf0fed0f25015d05fd
BLAKE2b-256 d63f3d85be0215bfdf243d4fccf4428954b43d7eb223ffe0fc7c80ef10f9f302

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.11.0-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 8.6 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0.post20200106 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 854c0fce335fb3271fd3786b94931443bb282de77c7082d735abfa0bfed73ab1
MD5 44775c9409774223bacca9fb5bf343a9
BLAKE2b-256 5940c53e0149c147d7e17b60f5f430445e70c42330e6296ed3bb65753728b5a3

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.0-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: statsmodels-0.11.0-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 8.2 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0.post20200106 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 eb19fd8dcf7bb2b45b0835074face22b53bdfb6cc8d778fd072ca303c8351adb
MD5 13ad8dea7b8e20a1c59dba80a6b764fe
BLAKE2b-256 0778af65ff7ee81e83c77ce0381f4fa80aaec2ab0e2df638db6306f735b71d6b

See more details on using hashes here.

File details

Details for the file statsmodels-0.11.0-cp35-cp35m-macosx_10_6_intel.whl.

File metadata

  • Download URL: statsmodels-0.11.0-cp35-cp35m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 8.3 MB
  • Tags: CPython 3.5m, macOS 10.6+ Intel (x86-64, i386)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0.post20200106 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.7.6

File hashes

Hashes for statsmodels-0.11.0-cp35-cp35m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 071649014680bc7cad74d323878a41099db0bb1bb0d93e7d640a0d341b467da6
MD5 d7596a398e363ff2cad3b51ea9e349f2
BLAKE2b-256 9827620b28998746781344b62307016287fe17867e83b4410c005cd2b70b2675

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page