Skip to main content

Statistical computations and models for Python

Project description

PyPI Version Conda Version License Azure CI Build Status Codecov Coverage Coveralls Coverage PyPI - Downloads Conda downloads

About statsmodels

statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics and estimation and inference for statistical models.

Documentation

The documentation for the latest release is at

https://www.statsmodels.org/stable/

The documentation for the development version is at

https://www.statsmodels.org/dev/

Recent improvements are highlighted in the release notes

https://www.statsmodels.org/stable/release/

Backups of documentation are available at https://statsmodels.github.io/stable/ and https://statsmodels.github.io/dev/.

Main Features

  • Linear regression models:

    • Ordinary least squares

    • Generalized least squares

    • Weighted least squares

    • Least squares with autoregressive errors

    • Quantile regression

    • Recursive least squares

  • Mixed Linear Model with mixed effects and variance components

  • GLM: Generalized linear models with support for all of the one-parameter exponential family distributions

  • Bayesian Mixed GLM for Binomial and Poisson

  • GEE: Generalized Estimating Equations for one-way clustered or longitudinal data

  • Discrete models:

    • Logit and Probit

    • Multinomial logit (MNLogit)

    • Poisson and Generalized Poisson regression

    • Negative Binomial regression

    • Zero-Inflated Count models

  • RLM: Robust linear models with support for several M-estimators.

  • Time Series Analysis: models for time series analysis

    • Complete StateSpace modeling framework

      • Seasonal ARIMA and ARIMAX models

      • VARMA and VARMAX models

      • Dynamic Factor models

      • Unobserved Component models

    • Markov switching models (MSAR), also known as Hidden Markov Models (HMM)

    • Univariate time series analysis: AR, ARIMA

    • Vector autoregressive models, VAR and structural VAR

    • Vector error correction model, VECM

    • exponential smoothing, Holt-Winters

    • Hypothesis tests for time series: unit root, cointegration and others

    • Descriptive statistics and process models for time series analysis

  • Survival analysis:

    • Proportional hazards regression (Cox models)

    • Survivor function estimation (Kaplan-Meier)

    • Cumulative incidence function estimation

  • Multivariate:

    • Principal Component Analysis with missing data

    • Factor Analysis with rotation

    • MANOVA

    • Canonical Correlation

  • Nonparametric statistics: Univariate and multivariate kernel density estimators

  • Datasets: Datasets used for examples and in testing

  • Statistics: a wide range of statistical tests

    • diagnostics and specification tests

    • goodness-of-fit and normality tests

    • functions for multiple testing

    • various additional statistical tests

  • Imputation with MICE, regression on order statistic and Gaussian imputation

  • Mediation analysis

  • Graphics includes plot functions for visual analysis of data and model results

  • I/O

    • Tools for reading Stata .dta files, but pandas has a more recent version

    • Table output to ascii, latex, and html

  • Miscellaneous models

  • Sandbox: statsmodels contains a sandbox folder with code in various stages of development and testing which is not considered “production ready”. This covers among others

    • Generalized method of moments (GMM) estimators

    • Kernel regression

    • Various extensions to scipy.stats.distributions

    • Panel data models

    • Information theoretic measures

How to get it

The main branch on GitHub is the most up to date code

https://www.github.com/statsmodels/statsmodels

Source download of release tags are available on GitHub

https://github.com/statsmodels/statsmodels/tags

Binaries and source distributions are available from PyPi

https://pypi.org/project/statsmodels/

Binaries can be installed in Anaconda

conda install statsmodels

Installing from sources

See INSTALL.txt for requirements or see the documentation

https://statsmodels.github.io/dev/install.html

Contributing

Contributions in any form are welcome, including:

  • Documentation improvements

  • Additional tests

  • New features to existing models

  • New models

https://www.statsmodels.org/stable/dev/test_notes

for instructions on installing statsmodels in editable mode.

License

Modified BSD (3-clause)

Discussion and Development

Discussions take place on the mailing list

https://groups.google.com/group/pystatsmodels

and in the issue tracker. We are very interested in feedback about usability and suggestions for improvements.

Bug Reports

Bug reports can be submitted to the issue tracker at

https://github.com/statsmodels/statsmodels/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

statsmodels-0.13.3.tar.gz (18.4 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

statsmodels-0.13.3-cp311-cp311-win_amd64.whl (9.0 MB view details)

Uploaded CPython 3.11Windows x86-64

statsmodels-0.13.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

statsmodels-0.13.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.6 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

statsmodels-0.13.3-cp311-cp311-macosx_11_0_arm64.whl (9.2 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

statsmodels-0.13.3-cp311-cp311-macosx_10_9_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

statsmodels-0.13.3-cp310-cp310-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.10Windows x86-64

statsmodels-0.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

statsmodels-0.13.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.6 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

statsmodels-0.13.3-cp310-cp310-macosx_11_0_arm64.whl (9.2 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

statsmodels-0.13.3-cp310-cp310-macosx_10_9_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

statsmodels-0.13.3-cp39-cp39-win_amd64.whl (9.2 MB view details)

Uploaded CPython 3.9Windows x86-64

statsmodels-0.13.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

statsmodels-0.13.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.6 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

statsmodels-0.13.3-cp39-cp39-macosx_11_0_arm64.whl (9.2 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

statsmodels-0.13.3-cp39-cp39-macosx_10_9_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

statsmodels-0.13.3-cp38-cp38-win_amd64.whl (9.2 MB view details)

Uploaded CPython 3.8Windows x86-64

statsmodels-0.13.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

statsmodels-0.13.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.6 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

statsmodels-0.13.3-cp38-cp38-macosx_11_0_arm64.whl (9.1 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

statsmodels-0.13.3-cp38-cp38-macosx_10_9_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

statsmodels-0.13.3-cp37-cp37m-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.7mWindows x86-64

statsmodels-0.13.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

statsmodels-0.13.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.6 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ ARM64

statsmodels-0.13.3-cp37-cp37m-macosx_10_9_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

File details

Details for the file statsmodels-0.13.3.tar.gz.

File metadata

  • Download URL: statsmodels-0.13.3.tar.gz
  • Upload date:
  • Size: 18.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.12

File hashes

Hashes for statsmodels-0.13.3.tar.gz
Algorithm Hash digest
SHA256 ed71df887334b1d332e71d33215122bdd54494dcb2248606b30bcfa6112e860a
MD5 ba40142bfcb85b6b145dfec79580bde2
BLAKE2b-256 cf5bbd9ec64964c35f0ebdd368743f93d282c8cb42f3de05d4678bac92ac4d3e

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.3-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5368bccd471bb8cef0a8957ba5f2a3e5b5ecc433b0783d9f602039df45c780d3
MD5 d917afec0c1456a146d91165b6167445
BLAKE2b-256 01031fd0a9afe9b64a5c0bee1b74a64c02321e0edb73e5a38f8a8d5d14dd7a56

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a61e0652f62b01981d8e857aa77550b42cf316c9d8e569b559869c248e3de834
MD5 b7c9c28b091e0884f8b0ab563f5952e0
BLAKE2b-256 72d65c2d88dbe4f0bd30c37b36738179c2c1eecbb73444a8b88838769f9aad1a

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 12b56d13d9a2af7a1aadc3fe9f3d3c18a5727a651323d94e7c2047177adfb9ce
MD5 14d2430918c46bac3a48b330ef408cfc
BLAKE2b-256 fb5925b46a4cb9c5df5a9b158367f5ac49c80b38fc296ccb1e5554bce358166b

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 393f6a7ec85f65be9ac1a13be152dd14c65084436c48bcdf94cb21ef0b6cb79c
MD5 eb4f2d2a60974fb45f7573b6095cd6b9
BLAKE2b-256 27b956983c53339413703259b832b4b27987bf22577f1f7981357a17d6143488

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 33f9caff2dbdfef22505678407d2f549b32a4a2729eb8675b60eb2932fc0e883
MD5 390f427caae44ce5297e2ef85be6c8fe
BLAKE2b-256 9defcd8d7f25bf139fad6caba449c17e44fccfcbaa03fbb7cb61e2891cbaf6c0

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.3-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4cd64076c3ad366b10fd4e6f8ca6aeb1e398ec5480bddb65fba8889dd9eb550d
MD5 17d2921155f1f131682324acc28cce2b
BLAKE2b-256 af97e38145947ea0ab2ed081918eb4b96ac7942682bfd9e97c2c31a68634324d

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1f432fb7f54ce5edccc83aa36566653cd04ee35bbbefdf0a2b7bd9c97c5da443
MD5 8368a62c7e5709dfe2eb5c4c3108378b
BLAKE2b-256 705c8b59d64e29fcef5354b413206541e57effdb4798a65b6e87f1d794443e32

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ab9f63f432889b179967ab645aea7480e28731823a3b99850d7f7a561b624f93
MD5 8a40b7db1c698b46b0cfdf2c06f31022
BLAKE2b-256 28587acc33350ad7da308029bd02c2bc697c1d844c93ede72dffeadc3809598f

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 658b634c273c2f287a0086e56a5d6b95ec3ddac991cbb020b34f731e932de0bd
MD5 5b423bc4a5141ee596f5a55be8ea7895
BLAKE2b-256 877198bd7d8b688730ce2c6c9662b4f3e90ff8aff9cea6b63a2dd04bf83ed7ad

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b71bb64c6d4087dd6192eadfad390fbeb4074f676ef34c7e56579cead8c478e7
MD5 b68f19f7e6ff00d300c4cc3a3e929d3b
BLAKE2b-256 14cec8c3d1bd03029fd830ba7d64def23c19f85a091b14c845d0ba8c2e20ece2

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.3-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 000c7a1ce6780834f5fbb63f9ae07a00863a00f602c7c470c942153692f5bbc3
MD5 9d553d7f8c918b0a18d848620627fd2d
BLAKE2b-256 c407b88ec8087ec789269bdafc2d7c23d90891149d3b8381ee25c9c6e7d2a7d7

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 81f8e71963a7bd169338fbb1472e34ec85ae4447414ac37bdae5cf6d1ac223bb
MD5 25a4bfb076e0e7197d6d686a92aa906f
BLAKE2b-256 2d730bc81b51d22699b88015fe368fac086af9ebd8d038dcc817880330ea25ce

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d3609824e1ced44722bd905564d8ce94df29d24e32a6dd67cc9255932aedcd7b
MD5 e2c33e0c15738e0cb65eb53f2ff0e416
BLAKE2b-256 a00922827ea135bcbb7499d0c56fd0ae56264c6760e6676c5a4526cf7e5f37ba

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 afccb80e3ddc969bfb5285f846ac2622861ffe192423087214d60e4c6e40e384
MD5 d50c0a5f94a48a36d8ceef874943d7e6
BLAKE2b-256 33a1cafc7aaf85a830a2236dfe31a989bd90e257738a5ae55474cfbbf08eecda

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 78cd12b0ee543fa955d2bace18518fc7d2b57f13c65929b54445bf3e54955b08
MD5 b2938f1771481c1ab1631d3ee1243fcf
BLAKE2b-256 bc1a7a4f64836811dadd717c62a9db7a906d5521bc6bedae9dec0ac5d08261e7

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.3-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 61a0f39848ebacf5560e1539ca0037b8fc25cc9d1d7444bbef5bdc0a3c56087b
MD5 b0743f41c2ff7cfbd93483d909005abc
BLAKE2b-256 d2886e743bcac157db7f72ed4ed6f4ee92834d7278bcb51a4cd94e4697471c3d

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 352041bc04eaf90232e54a86861a460365ef45f34f58529578487e6f640dadf3
MD5 52c57b63669eb3205a42bfaff9e9bbcb
BLAKE2b-256 b1645cb492d861682a68b03b66b24c54ad0031d40a582e40e2d35c936bd080e1

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7fff0316420bc4f6fbd80dd77eb74f3834fcd0e4ca98ba9611b8a6d41ebbb979
MD5 66ca2850f62fbeadc116ea7e9de99dc0
BLAKE2b-256 c3b10eaedf01ddaad528553e3c0f15ac605682a056403e718eb9a91f747611fa

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3b3a9942d0b462af4c68c3895095d304869cbec9d97f3c268f19a6ba7ba294dc
MD5 c0dec7ccc505a2114d00d1881df73089
BLAKE2b-256 e7a9e51e5d2441e6aaff89d8ffaa4c7a2cdd9ba335c42d681e07316dd8efb01d

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9da39a36d114abcdcf8ebd351ed69229e23cb12b8a607996cb6511fa88e78b4d
MD5 83a32d7bbeccc5809b4bbef75106af79
BLAKE2b-256 c0f1071dec122a4891a67d3e836b7a0997500cd8afd992be4a98a59e6508440a

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.3-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 2185ed356823cd1c258c09b790f0c21d2fd49321e82c79f8f6dc546f1c671d7a
MD5 2261588b39192aef9173e04bfc3f27af
BLAKE2b-256 10417020e1681c3191472ebc5528b65964314ed1f98b0255a2e72dbfc8744006

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d270a11aac6720a8024e1136ab44036d0878f62995617bb5b9fc5c77ea3d3b8
MD5 0ccb5760a7e2e15214d3b6c26636df8e
BLAKE2b-256 c452324b5f986be8c8205d59183f4dd21368744ed57b23366a867c9a32c8ea22

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2ea2b481b15e9e501904a1c36efc5f9a202f87529e600a99c364fd7e4598ae88
MD5 a3bf92673d6ceaf70928451a815ce5bd
BLAKE2b-256 0993f527b48e0104a8f9d37a9d870c96d6d7e2b1c83fc1369780aed442f333d8

See more details on using hashes here.

File details

Details for the file statsmodels-0.13.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.13.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1ecfb191958de187ba44b93316f4953b8b6588b5f68dcab218f76498a862dd7c
MD5 5be0eb6e896a80c935873b8c474bda39
BLAKE2b-256 f613cae812265950af9f4dbfe71c56902ff94be6cf6755626933bf6776e47357

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page