Skip to main content

Statistical computations and models for Python

Project description

Statsmodels logo

PyPI Version Conda Version License Azure CI Build Status Codecov Coverage Coveralls Coverage PyPI - Downloads Conda downloads

About statsmodels

statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics and estimation and inference for statistical models.

Documentation

The documentation for the latest release is at

https://www.statsmodels.org/stable/

The documentation for the development version is at

https://www.statsmodels.org/dev/

Recent improvements are highlighted in the release notes

https://www.statsmodels.org/stable/release/

Backups of documentation are available at https://statsmodels.github.io/stable/ and https://statsmodels.github.io/dev/.

Main Features

  • Linear regression models:

    • Ordinary least squares

    • Generalized least squares

    • Weighted least squares

    • Least squares with autoregressive errors

    • Quantile regression

    • Recursive least squares

  • Mixed Linear Model with mixed effects and variance components

  • GLM: Generalized linear models with support for all of the one-parameter exponential family distributions

  • Bayesian Mixed GLM for Binomial and Poisson

  • GEE: Generalized Estimating Equations for one-way clustered or longitudinal data

  • Discrete models:

    • Logit and Probit

    • Multinomial logit (MNLogit)

    • Poisson and Generalized Poisson regression

    • Negative Binomial regression

    • Zero-Inflated Count models

  • RLM: Robust linear models with support for several M-estimators.

  • Time Series Analysis: models for time series analysis

    • Complete StateSpace modeling framework

      • Seasonal ARIMA and ARIMAX models

      • VARMA and VARMAX models

      • Dynamic Factor models

      • Unobserved Component models

    • Markov switching models (MSAR), also known as Hidden Markov Models (HMM)

    • Univariate time series analysis: AR, ARIMA

    • Vector autoregressive models, VAR and structural VAR

    • Vector error correction model, VECM

    • exponential smoothing, Holt-Winters

    • Hypothesis tests for time series: unit root, cointegration and others

    • Descriptive statistics and process models for time series analysis

  • Survival analysis:

    • Proportional hazards regression (Cox models)

    • Survivor function estimation (Kaplan-Meier)

    • Cumulative incidence function estimation

  • Multivariate:

    • Principal Component Analysis with missing data

    • Factor Analysis with rotation

    • MANOVA

    • Canonical Correlation

  • Nonparametric statistics: Univariate and multivariate kernel density estimators

  • Datasets: Datasets used for examples and in testing

  • Statistics: a wide range of statistical tests

    • diagnostics and specification tests

    • goodness-of-fit and normality tests

    • functions for multiple testing

    • various additional statistical tests

  • Imputation with MICE, regression on order statistic and Gaussian imputation

  • Mediation analysis

  • Graphics includes plot functions for visual analysis of data and model results

  • I/O

    • Tools for reading Stata .dta files, but pandas has a more recent version

    • Table output to ascii, latex, and html

  • Miscellaneous models

  • Sandbox: statsmodels contains a sandbox folder with code in various stages of development and testing which is not considered “production ready”. This covers among others

    • Generalized method of moments (GMM) estimators

    • Kernel regression

    • Various extensions to scipy.stats.distributions

    • Panel data models

    • Information theoretic measures

How to get it

The main branch on GitHub is the most up to date code

https://www.github.com/statsmodels/statsmodels

Source download of release tags are available on GitHub

https://github.com/statsmodels/statsmodels/tags

Binaries and source distributions are available from PyPi

https://pypi.org/project/statsmodels/

Binaries can be installed in Anaconda

conda install statsmodels

Installing from sources

See INSTALL.txt for requirements or see the documentation

https://statsmodels.github.io/dev/install.html

Contributing

Contributions in any form are welcome, including:

  • Documentation improvements

  • Additional tests

  • New features to existing models

  • New models

https://www.statsmodels.org/stable/dev/test_notes

for instructions on installing statsmodels in editable mode.

License

Modified BSD (3-clause)

Discussion and Development

Discussions take place on the mailing list

https://groups.google.com/group/pystatsmodels

and in the issue tracker. We are very interested in feedback about usability and suggestions for improvements.

Bug Reports

Bug reports can be submitted to the issue tracker at

https://github.com/statsmodels/statsmodels/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

statsmodels-0.14.0rc0.tar.gz (19.6 MB view details)

Uploaded Source

Built Distributions

statsmodels-0.14.0rc0-cp311-cp311-win_amd64.whl (9.2 MB view details)

Uploaded CPython 3.11Windows x86-64

statsmodels-0.14.0rc0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

statsmodels-0.14.0rc0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.8 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

statsmodels-0.14.0rc0-cp311-cp311-macosx_11_0_arm64.whl (9.4 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

statsmodels-0.14.0rc0-cp311-cp311-macosx_10_9_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

statsmodels-0.14.0rc0-cp310-cp310-win_amd64.whl (9.2 MB view details)

Uploaded CPython 3.10Windows x86-64

statsmodels-0.14.0rc0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

statsmodels-0.14.0rc0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.8 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

statsmodels-0.14.0rc0-cp310-cp310-macosx_11_0_arm64.whl (9.4 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

statsmodels-0.14.0rc0-cp310-cp310-macosx_10_9_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

statsmodels-0.14.0rc0-cp39-cp39-win_amd64.whl (9.4 MB view details)

Uploaded CPython 3.9Windows x86-64

statsmodels-0.14.0rc0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

statsmodels-0.14.0rc0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.8 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

statsmodels-0.14.0rc0-cp39-cp39-macosx_11_0_arm64.whl (9.4 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

statsmodels-0.14.0rc0-cp39-cp39-macosx_10_9_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

statsmodels-0.14.0rc0-cp38-cp38-win_amd64.whl (9.4 MB view details)

Uploaded CPython 3.8Windows x86-64

statsmodels-0.14.0rc0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

statsmodels-0.14.0rc0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.8 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

statsmodels-0.14.0rc0-cp38-cp38-macosx_11_0_arm64.whl (9.3 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

statsmodels-0.14.0rc0-cp38-cp38-macosx_10_9_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

File details

Details for the file statsmodels-0.14.0rc0.tar.gz.

File metadata

  • Download URL: statsmodels-0.14.0rc0.tar.gz
  • Upload date:
  • Size: 19.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.12

File hashes

Hashes for statsmodels-0.14.0rc0.tar.gz
Algorithm Hash digest
SHA256 645706abb00bc6c762135eff2d337609f4cf537fa14e586385b852b0eb2eb7ec
MD5 4a1ca9d45bf2c94676523362e767b310
BLAKE2b-256 1362be7ece587e395571988129848658f76ea9a0ba01f7e7e2f4765604c62191

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.0rc0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.0rc0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c03d6e65991e7e5bda79f100fc8232f9670b01f945665053aa390ea312fb6834
MD5 a0b634f4c7f7e8e7b9428564767a903b
BLAKE2b-256 e0aabd662f6e969149a8ecc458923c07dbb1c6ed69d2e18e60fd3eda348e9cc4

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.0rc0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.0rc0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 15da198f9c52a535341f3a7ddab14372996338c89f453686f23a0d8b5b586e96
MD5 0dc51faa6b61e4de6b1feb0ccbafc935
BLAKE2b-256 ee340dd8548cf3138fc7fcd517768c8aac1c54e101463730ad00e89982aef584

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.0rc0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.0rc0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c31fa95bae4117a898e79f10f29b90dc5bad6c09537a81916513cf620d29e112
MD5 829745b0e0fe9b5e98dc955d3f5c10ab
BLAKE2b-256 bff39d540e7ac6d8d970219b93d127ae4de28858ec8f8ff2d018e966b848cbd1

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.0rc0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.0rc0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9682f00bb8ef47f7eb43ebdedc4eb2a728f94bdddfcb126e3a6938004badd5da
MD5 b4e7b4737e5f8ca4ce7e00ff87a70ca0
BLAKE2b-256 87ef1db5aefa91f65beea3a9e684caf56058b4f6381a6fb124404c55d970a31c

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.0rc0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.0rc0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d77aacf7b45d4c3f23100c16f9ac6f36bfb5e1af23c540978fb5382cf1aaa1a4
MD5 d694eaec7897c01302c275b3f4d2ea20
BLAKE2b-256 79e99dd34b29c8dd3944404a3ebadcbe41f935372da1367f7449a93a42f5b7a3

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.0rc0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.0rc0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 91a867ad62490dc24b50eb2fcb13f9eccb7eb34e5a6afd1901dd0b4e958b84f1
MD5 e9d1d79e08e4c2625b1cc0884a4fde26
BLAKE2b-256 c3816fd53822138dd013de07d60abf6d674822f8b44d742a63e4dd1eb5658fee

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.0rc0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.0rc0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c9341ca4b634816193ca5a68d606de496eec1b6c18ffc9a28c99ab13b3287701
MD5 ca6eb4326a93eaf18791360b5c6438c6
BLAKE2b-256 dd4fe306a253fc4a1c4bee5405bdd613dd29a4d07d982cda27bcb1bcd0c9d3c8

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.0rc0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.0rc0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2ece62a8f24551d673b15b47e6f4561443ae3b66dd23f9d109c39219bb95827b
MD5 268f7cd4726614a4dd6e40d0459eef0c
BLAKE2b-256 4bd2f2ce017000e7ffa0e8893237072905ffba3c3d12f965b51ef5c26bca5704

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.0rc0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.0rc0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2bccee1936582caecfe8f72abdb719863ffd6b11934e7e1dbe714ae2e2eef295
MD5 1c2836c8124a6fb6ff025978fd9b4c73
BLAKE2b-256 a66c32015b1f30393988d3e3431d71fe95513b6560b70737999c428d1756df34

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.0rc0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.0rc0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b7b784de4fcbc8dda6a1abb6f7a0749b88af2623d1d900a6447f172c6222a13e
MD5 ae292efa77ca1c27d4ea05845c3fc00f
BLAKE2b-256 6ccb403d2e7ba4d51928ebadc66c6132320df7bb054428092f499ddae888872c

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.0rc0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.0rc0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f3848c96dfca80676de469fbfd564ed7578c0d87e1d08fa0c24651708c4cecfb
MD5 391bf4472d17846e947f8e311b594820
BLAKE2b-256 95fa95721a98a64bfd48df455fd7ec3543ce185f8df06e9f0499b7ab08cc0318

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.0rc0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.0rc0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 16d1cc808a90ad7439cf7a783ae0dbef08732c19cf673d1a79d0da8a0153bc51
MD5 fe33187524ba0c843cd9d0e8e7528f3a
BLAKE2b-256 452ca0d71b4560483705c1e3e5468a6a6099bc6e746eefd19e4eab763212ba8c

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.0rc0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.0rc0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bd565bdc5a797f5801f80a9c3b3e832fd79c3977b47a79f41850ed455727b5bd
MD5 a2f50074064d13407e6298f3cd6747a8
BLAKE2b-256 67a69e2585f4207e77dbab0ab1761a2fb847f0759989c404c145d149ebd62428

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.0rc0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.0rc0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2d9bcc1790c72ed7d7e775ca64e493c11eae61b4d32f373ea7ebb1529f241610
MD5 c1c50f02fec536a066f2deca3d8426ef
BLAKE2b-256 fb440fcff333722ff21aa9662ca4607601baf23fb061fa52a13f23f2161bcd0c

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.0rc0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.0rc0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 68ff3d3303e1dca01442f7c6726c98e14739f86db43b79baf1c7b3d2879c794b
MD5 1f09686e919c80cff6ebf51e40b01087
BLAKE2b-256 02d82d6f2da8fd1c50731a9a3521d72a0a03b9018253fb55d391e2524a39073e

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.0rc0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.0rc0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 189c2619bd2f22ebcc7221f95e88606254ac0a6d975654cb902d52ca865fa185
MD5 c7307ee635db0e3102274b0e7932b030
BLAKE2b-256 b695d7fc5f40d3851aca4009354e831a00f1f296af019e500dab3a44efe77ab0

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.0rc0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.0rc0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1d0a96c8545039aea7c8af199dea67fb38553a7e5ba638e683f571a834691380
MD5 f79c5cd2dd2df919e421a54882a3eb2a
BLAKE2b-256 671cf1fa9a6a6a82268d6d4ab5431c6df62e967857794a0cd3c834f5026f8dfa

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.0rc0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.0rc0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cc51dcc28199894d604ccfa1a20fa60c3ad0b4f8fbf8b8bc05956e41a3e46cf5
MD5 22541942a29100abfe055726f06eda7a
BLAKE2b-256 eed347004d2e88a7fa8dd9a233179eb09f4f930ceed26943e4356abd03072a8e

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.0rc0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.0rc0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1416f6ab5b3f7a0048200347eb649fd9425f461fc575a652278807ddbe497077
MD5 e82f8f9cb67cde336ccbeb53d7daf457
BLAKE2b-256 bffdd1e45e2a62449fde97dbf838266e2699f8e17ab341ca9780c9f1c387bab1

See more details on using hashes here.

File details

Details for the file statsmodels-0.14.0rc0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.14.0rc0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 04b495dd8cb3e8add76a151f65f9154d55fac83c03b8e7274aee5becbf5a8835
MD5 1379607f160c14693e673dab727d96db
BLAKE2b-256 ab3513ccc6ad3b958437ab948883ab2c8abcc2dcd9a4690a915129212954db54

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page