Skip to main content

Statistical computations and models for Python

Project description

Travis Build Status Appveyor Build Status Coveralls Coverage

About Statsmodels

Statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics and estimation and inference for statistical models.

Documentation

The documentation for the latest release is at

http://www.statsmodels.org/stable/

The documentation for the development version is at

http://www.statsmodels.org/dev/

Recent improvements are highlighted in the release notes

http://www.statsmodels.org/stable/release/version0.9.html

Backups of documentation are available at http://statsmodels.github.io/stable/ and http://statsmodels.github.io/dev/.

Main Features

  • Linear regression models:

    • Ordinary least squares

    • Generalized least squares

    • Weighted least squares

    • Least squares with autoregressive errors

    • Quantile regression

    • Recursive least squares

  • Mixed Linear Model with mixed effects and variance components

  • GLM: Generalized linear models with support for all of the one-parameter exponential family distributions

  • Bayesian Mixed GLM for Binomial and Poisson

  • GEE: Generalized Estimating Equations for one-way clustered or longitudinal data

  • Discrete models:

    • Logit and Probit

    • Multinomial logit (MNLogit)

    • Poisson and Generalized Poisson regression

    • Negative Binomial regression

    • Zero-Inflated Count models

  • RLM: Robust linear models with support for several M-estimators.

  • Time Series Analysis: models for time series analysis

    • Complete StateSpace modeling framework

      • Seasonal ARIMA and ARIMAX models

      • VARMA and VARMAX models

      • Dynamic Factor models

      • Unobserved Component models

    • Markov switching models (MSAR), also known as Hidden Markov Models (HMM)

    • Univariate time series analysis: AR, ARIMA

    • Vector autoregressive models, VAR and structural VAR

    • Vector error correction modle, VECM

    • exponential smoothing, Holt-Winters

    • Hypothesis tests for time series: unit root, cointegration and others

    • Descriptive statistics and process models for time series analysis

  • Survival analysis:

    • Proportional hazards regression (Cox models)

    • Survivor function estimation (Kaplan-Meier)

    • Cumulative incidence function estimation

  • Multivariate:

    • Principal Component Analysis with missing data

    • Factor Analysis with rotation

    • MANOVA

    • Canonical Correlation

  • Nonparametric statistics: Univariate and multivariate kernel density estimators

  • Datasets: Datasets used for examples and in testing

  • Statistics: a wide range of statistical tests

    • diagnostics and specification tests

    • goodness-of-fit and normality tests

    • functions for multiple testing

    • various additional statistical tests

  • Imputation with MICE, regression on order statistic and Gaussian imputation

  • Mediation analysis

  • Graphics includes plot functions for visual analysis of data and model results

  • I/O

    • Tools for reading Stata .dta files, but pandas has a more recent version

    • Table output to ascii, latex, and html

  • Miscellaneous models

  • Sandbox: statsmodels contains a sandbox folder with code in various stages of developement and testing which is not considered “production ready”. This covers among others

    • Generalized method of moments (GMM) estimators

    • Kernel regression

    • Various extensions to scipy.stats.distributions

    • Panel data models

    • Information theoretic measures

How to get it

The master branch on GitHub is the most up to date code

https://www.github.com/statsmodels/statsmodels

Source download of release tags are available on GitHub

https://github.com/statsmodels/statsmodels/tags

Binaries and source distributions are available from PyPi

http://pypi.python.org/pypi/statsmodels/

Binaries can be installed in Anaconda

conda install statsmodels

Installing from sources

See INSTALL.txt for requirements or see the documentation

http://statsmodels.github.io/dev/install.html

License

Modified BSD (3-clause)

Discussion and Development

Discussions take place on our mailing list.

http://groups.google.com/group/pystatsmodels

We are very interested in feedback about usability and suggestions for improvements.

Bug Reports

Bug reports can be submitted to the issue tracker at

https://github.com/statsmodels/statsmodels/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

statsmodels-0.9.0.tar.gz (12.7 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

statsmodels-0.9.0-cp37-none-win_amd64.whl (7.0 MB view details)

Uploaded CPython 3.7Windows x86-64

statsmodels-0.9.0-cp37-none-win32.whl (6.6 MB view details)

Uploaded CPython 3.7Windows x86

statsmodels-0.9.0-cp37-cp37m-manylinux1_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.7m

statsmodels-0.9.0-cp37-cp37m-manylinux1_i686.whl (7.0 MB view details)

Uploaded CPython 3.7m

statsmodels-0.9.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.7mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

statsmodels-0.9.0-cp36-none-win32.whl (6.6 MB view details)

Uploaded CPython 3.6Windows x86

statsmodels-0.9.0-cp36-cp36m-win_amd64.whl (7.0 MB view details)

Uploaded CPython 3.6mWindows x86-64

statsmodels-0.9.0-cp36-cp36m-manylinux1_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.6m

statsmodels-0.9.0-cp36-cp36m-manylinux1_i686.whl (7.0 MB view details)

Uploaded CPython 3.6m

statsmodels-0.9.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.6mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

statsmodels-0.9.0-cp35-none-win32.whl (6.6 MB view details)

Uploaded CPython 3.5Windows x86

statsmodels-0.9.0-cp35-cp35m-win_amd64.whl (7.0 MB view details)

Uploaded CPython 3.5mWindows x86-64

statsmodels-0.9.0-cp35-cp35m-manylinux1_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.5m

statsmodels-0.9.0-cp35-cp35m-manylinux1_i686.whl (6.9 MB view details)

Uploaded CPython 3.5m

statsmodels-0.9.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.5mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

statsmodels-0.9.0-cp34-cp34m-win_amd64.whl (6.9 MB view details)

Uploaded CPython 3.4mWindows x86-64

statsmodels-0.9.0-cp27-none-win32.whl (6.7 MB view details)

Uploaded CPython 2.7Windows x86

statsmodels-0.9.0-cp27-cp27mu-manylinux1_x86_64.whl (7.4 MB view details)

Uploaded CPython 2.7mu

statsmodels-0.9.0-cp27-cp27mu-manylinux1_i686.whl (7.0 MB view details)

Uploaded CPython 2.7mu

statsmodels-0.9.0-cp27-cp27m-win_amd64.whl (7.1 MB view details)

Uploaded CPython 2.7mWindows x86-64

statsmodels-0.9.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (9.8 MB view details)

Uploaded CPython 2.7mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

File details

Details for the file statsmodels-0.9.0.tar.gz.

File metadata

  • Download URL: statsmodels-0.9.0.tar.gz
  • Upload date:
  • Size: 12.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for statsmodels-0.9.0.tar.gz
Algorithm Hash digest
SHA256 6461f93a842c649922c2c9a9bc9d9c4834110b89de8c4af196a791ab8f42ba3b
MD5 63ab8b3ffb4e6a23a5dd401843bd232c
BLAKE2b-256 6768eb3ec6ab61f97216c257edddb853cc174cd76ea44b365cf4adaedcd44482

See more details on using hashes here.

File details

Details for the file statsmodels-0.9.0-cp37-none-win_amd64.whl.

File metadata

  • Download URL: statsmodels-0.9.0-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 7.0 MB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.2 requests-toolbelt/0.8.0 tqdm/4.19.5 CPython/3.6.4

File hashes

Hashes for statsmodels-0.9.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 31c2e26436a992e66355c0b3ef4b7c9714a0aa8375952d24f0593ac7c417b1e9
MD5 c1c1e4e30c02181bfb2b56289088ac6e
BLAKE2b-256 41a9a89fced784543d565b49f5f1e52d6b90ad53f498eae85e09d16e1c3581a8

See more details on using hashes here.

File details

Details for the file statsmodels-0.9.0-cp37-none-win32.whl.

File metadata

  • Download URL: statsmodels-0.9.0-cp37-none-win32.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.2 requests-toolbelt/0.8.0 tqdm/4.19.5 CPython/3.6.4

File hashes

Hashes for statsmodels-0.9.0-cp37-none-win32.whl
Algorithm Hash digest
SHA256 d9b85bd98e90a02f2192084a85c857465e40e508629ac922242dba70731d0449
MD5 c4365a9e1bff723703dc239c4f10cd7b
BLAKE2b-256 813ebdb1dc61118962c42885e0bd199ed3753ac814b215da216d3e3864a6c67b

See more details on using hashes here.

File details

Details for the file statsmodels-0.9.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: statsmodels-0.9.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 7.4 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.2 requests-toolbelt/0.8.0 tqdm/4.19.5 CPython/3.6.4

File hashes

Hashes for statsmodels-0.9.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f512afa7bc10b848aaacab5dfff6f61255142dd3a5581f82980c12745b0b6cd3
MD5 0a8b3bc4b8a6eb5f4108b5041d2f9e6f
BLAKE2b-256 3c68bebc0f0e412fc8375f7daffc7ec2946acc20ac1a55fb4949098df23b9768

See more details on using hashes here.

File details

Details for the file statsmodels-0.9.0-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: statsmodels-0.9.0-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 7.0 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.2 requests-toolbelt/0.8.0 tqdm/4.19.5 CPython/3.6.4

File hashes

Hashes for statsmodels-0.9.0-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 b4b4b25c0e4228b1d33098894c3b29f4546e45afb29b333582cbaa5e16f38f3c
MD5 e193ec65a34afcd34a265502e8fde480
BLAKE2b-256 5f9f757514f6e178ac8845d6dcb181efaf262bd9f1c7830da3d5dc6d5308e116

See more details on using hashes here.

File details

Details for the file statsmodels-0.9.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.9.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 78d1b40c18d41f6c683c1c184be146264a782d409a89d8ed6c78acd1e1c11659
MD5 2730179435cbedb56a550b35fec73aa8
BLAKE2b-256 2234f32c5812145d80bdb5e92af73e2173d08012379d52a30e87bef5a8b1b6e1

See more details on using hashes here.

File details

Details for the file statsmodels-0.9.0-cp36-none-win32.whl.

File metadata

File hashes

Hashes for statsmodels-0.9.0-cp36-none-win32.whl
Algorithm Hash digest
SHA256 2902f5eef49fc38c112ffd8168dd76f7ae27f6cb5aa735cf55bc887b49aaec6e
MD5 910895dac14fa212462f114e4017ce94
BLAKE2b-256 c197e00d4eaa00dc09698aed7b4da6198bed363d351a04d0ef06e1ed883838f8

See more details on using hashes here.

File details

Details for the file statsmodels-0.9.0-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.9.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 5de3d525b9a8679cd6c0f7f7c8cb8508275ab86cc3c1a140b2dc6b6390adb943
MD5 8788ee443028c009051a5ddf0cdc2ee3
BLAKE2b-256 772b8ba61399b31f984c263b177c2e2547a34f0d4d972a24a51fc77c376079b0

See more details on using hashes here.

File details

Details for the file statsmodels-0.9.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.9.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5d91ad30b8e20a45f583077ffeb4352be01955033f3dcd09bc06c30be1d29e8f
MD5 578fdb12f4c3ab28d281b76d40e3bcf1
BLAKE2b-256 85d169ee7e757f657e7f527cbf500ec2d295396e5bcec873cf4eb68962c41024

See more details on using hashes here.

File details

Details for the file statsmodels-0.9.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for statsmodels-0.9.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ede078fdc9af857ed454d1e9e51831b2d577255c794d4044ecc332d40f3e3b36
MD5 57836b25883d508353c710d4a091e06d
BLAKE2b-256 f7a131c5ff4f2d7c820ada1a4ed11b1442bd30f4e3df1638be5a174c6b74e0a3

See more details on using hashes here.

File details

Details for the file statsmodels-0.9.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.9.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 18844bbd95fcf62885d195571334762533ae16de182e1032ccc1595a98ffffb4
MD5 b03b9b71131cebcc2e9cc9f16f2878f4
BLAKE2b-256 29df1f8233500d8bb90f16fd066560f3805197e568af611ca97eddd5fb81b012

See more details on using hashes here.

File details

Details for the file statsmodels-0.9.0-cp35-none-win32.whl.

File metadata

File hashes

Hashes for statsmodels-0.9.0-cp35-none-win32.whl
Algorithm Hash digest
SHA256 95d35b33a301ded560662c733780ce58b37e218d122bb1b9c14e216aa9d42a2a
MD5 cde190f79f44711b1882c57ad869b3d9
BLAKE2b-256 7f02b56e90d00885d083d0ccadbb31b8b11ca7ab7f8d43f287c9755770d71898

See more details on using hashes here.

File details

Details for the file statsmodels-0.9.0-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.9.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 27e87cc6cd390fce8f44df225dadf589e1df6272f36b267ccdece2a9c4f52938
MD5 3555b7402e246515e302c3d61d306db7
BLAKE2b-256 9ffda42d857429f5a5eeda0fcb9eca0d078fb7a7370a49b7cc79550906930166

See more details on using hashes here.

File details

Details for the file statsmodels-0.9.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.9.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c06fd4af98f4c7ab61c9a79fd051ad4d7247991a691c3b4883c611029bac30a2
MD5 9e164302ee3399cc95dfcc77cd1024ed
BLAKE2b-256 a575758f980df4d971b909d2bc516d22494a2e871fe1f3968ff9798b52d20fb9

See more details on using hashes here.

File details

Details for the file statsmodels-0.9.0-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for statsmodels-0.9.0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 7c1a7cf557139f4bcbf97172268a8001156e42a7eeccca04d15c0cb7c3491ada
MD5 17b54d8e524976db131a42951946654e
BLAKE2b-256 a43ae7b935e2ddfa3dcc8e93114896d3dc858a69d544f7cb88c382bcf1ec7cca

See more details on using hashes here.

File details

Details for the file statsmodels-0.9.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.9.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 8532885c5778f94dae7ad83c4ac3f6916d4c8eb294f47ecefe2f0d3b967e6a16
MD5 86aad5d1bc8c215aedc2dba96524ae21
BLAKE2b-256 35190bae144a117bd4037de504fd2edb4ccf7f35ad6dde2604e0cbd170f92243

See more details on using hashes here.

File details

Details for the file statsmodels-0.9.0-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.9.0-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 e2d9fd696e2d1523386d0f64f115352acbfaf59d5ca4c681c23ea064393a2ac4
MD5 1cd99f7a822b8f4e4288d3fa004e4480
BLAKE2b-256 7b75132e31df213c75bb57ca87b49593667505648c88719ff4b12abce887d8b1

See more details on using hashes here.

File details

Details for the file statsmodels-0.9.0-cp27-none-win32.whl.

File metadata

File hashes

Hashes for statsmodels-0.9.0-cp27-none-win32.whl
Algorithm Hash digest
SHA256 d2003c70c854f35a6446a465c61c994486039feb2fd47345a1e9984e95d55878
MD5 aaa76bfc3b6f482a824476c359677b30
BLAKE2b-256 448184dc00cbd3992569c00dcc5d2f1c31f80e5fb5322744403a61c7fd6e515c

See more details on using hashes here.

File details

Details for the file statsmodels-0.9.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.9.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b48e283ba171698dca3989c0c03e6f25d3f431640383d926235d26ce48f3891c
MD5 19baa7318d3c8be3783849bea700f1eb
BLAKE2b-256 ed56a1d32debdaba5cc7986aeeeb79e33d74ae3394eabfd008b0113368b91981

See more details on using hashes here.

File details

Details for the file statsmodels-0.9.0-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for statsmodels-0.9.0-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 fbf789cc6d3fadca4350fa87e5f710ad2628e1fdff71bf8f853ecd49599ebe23
MD5 bc3bda1243a7cdfd348c41d464cb50b9
BLAKE2b-256 bfca0dfc732608db3a774ed0bcdc730fc332c8a20658e81a2c032ca359e7c033

See more details on using hashes here.

File details

Details for the file statsmodels-0.9.0-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for statsmodels-0.9.0-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 d7182803cdb09f1f17a335c0eae71d84905da9b0bc35c3d2c2379745f33096d9
MD5 ef921e48aedfc9743398902e30621e51
BLAKE2b-256 9d19075e6d23030b9032e9484a14a0a9ef80c732c092a4a43a8171696ba3170f

See more details on using hashes here.

File details

Details for the file statsmodels-0.9.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for statsmodels-0.9.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 0fd6af8db18b776c81c8fba54de20e9ec2f11b9310871b6b666d8805e3cf5ece
MD5 31b2d247b84b644781f9fc1ac97f7422
BLAKE2b-256 a6abf6034ca30bbb9c83dfe10addafef27dd9843f863fbe6dc15e65dbb929bd3

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page