A statistical visualization package optimized to work with percentiles and histograms.
Project description
StatsPack - Statistical Visualization Package
StatsPack is a Python package designed for statistical visualization. It provides functions to create density contour plots, confidence intervals, and other statistical visualizations directly related with percentiles of 2D distributions. It was specially desined to be lightweight and avoid memory overusage.
Requirements
Python3.8+
numpy
scipy
matplotlib
colorlog
logging
datetime
Installation
You can install the StatsPack package using pip:
pip install statspack
Usage
Import the package in your Python code
import statspack
Bining Data for Contour Plots
import numpy as np
import matplotlib.pyplot as plt
# Example data
x = np.random.rand(100)
y = np.random.rand(100)
z = np.random.rand(100)
# Create contour plot data
X, Y, Z = statspack.bining(x, y, z, nbins=10, xlim=(None, None), ylim=(None, None))
# Plot the contour
plt.contour(X, Y, Z)
plt.colorbar()
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Contour Plot')
plt.show()
Finding Confidence Intervals
import numpy as np
# Example PDF data
hist_pdf = np.random.rand(100)
# Find confidence interval
confidence_interval = statspack.find_confidence_interval(hist_pdf, prc=0.95)
print(f"95% Confidence Interval: {confidence_interval}")
Density Contour Plot
import numpy as np
import matplotlib.pyplot as plt
# Example data
xdata = np.random.rand(100)
ydata = np.random.rand(100)
binsx = 10
binsy = 10
# Create density contour plot
contours, levels = statspack.density_contour(xdata, ydata, binsx, binsy, verbose=True)
plt.colorbar(contours[0], label='Density')
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Density Contour Plot')
plt.show()
Contour PDF
import numpy as np
import matplotlib.pyplot as plt
# Example data
x_axis = np.random.rand(100)
y_axis = np.random.rand(100)
# Create contour PDF plot
contours = statspack.contour_pdf(x_axis, y_axis, nbins=10, percent=[10, 50, 90], colors=['blue', 'green', 'red'])
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Contour PDF Plot')
plt.show()
These are some of the functions provided by the StatsPack package for statistical visualization. You can refer to the function documentation in the source code for more details on their parameters and usage.
License
StatsPack is licensed under the GNU General Public License v3.0. You can find the full text of the license in the LICENSE
file included with the package.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file statspack-0.1.2.tar.gz
.
File metadata
- Download URL: statspack-0.1.2.tar.gz
- Upload date:
- Size: 20.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9417238e39e1120e3a420ffb2b3d84ea451709461235c2c705a871f3e5ea3a1e |
|
MD5 | e2e9e133c59d52f52e0ada3efc783c15 |
|
BLAKE2b-256 | 47e49b7c4b06211bc7f10a5fe368830cd14da7c7c7100014880b71cb0215e352 |
File details
Details for the file statspack-0.1.2-py2.py3-none-any.whl
.
File metadata
- Download URL: statspack-0.1.2-py2.py3-none-any.whl
- Upload date:
- Size: 20.5 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b4e5b653c0a28002a869f1373e1bfd672cbefd1f28edafd7dfac6e0d2e9fdcbe |
|
MD5 | 93935bfda113807f12056b045561363c |
|
BLAKE2b-256 | d2426f3f8d827d840e5c3d56b00edaddf75390519cb658efe9b7aa6d8e33a95e |