Structure and Dynamics on Graphs
Project description
Structure and Dynamics on Graphs (Beta)
The main goal of StDoG is to provide a package which can be used to study dynamical and structural properties (like spectra) on graphs with a large number of vertices. The modules of StDoG are being built by combining codes written in Tensorflow + CUDA and C++.
1 - Install
pip install stdog
2 - Examples
2.1 - Dynamics
2.1.1 - Kuramoto
Tensorflow
import numpy as np
import igraph as ig
from stdog.utils.misc import ig2sparse #Function to convert igraph format to sparse matrix
num_couplings = 40
N = 20480
G = ig.Graph.Erdos_Renyi(N, 3/N)
adj = ig2sparse(G)
omegas = np.random.normal(size= N).astype("float32")
couplings = np.linspace(0.0,4.,num_couplings)
phases = np.array([
np.random.uniform(-np.pi,np.pi,N)
for i_l in range(num_couplings)
],dtype=np.float32)
precision =32
dt = 0.01
num_temps = 50000
total_time = dt*num_temps
total_time_transient = total_time
transient = False
from stdog.dynamics.kuramoto import Heuns
heuns_0 = Heuns(adj, phases, omegas, couplings, total_time, dt,
device="/gpu:0", # or /cpu:
precision=precision, transient=transient)
heuns_0.run()
heuns_0.transient = True
heuns_0.total_time = total_time_transient
heuns_0.run()
order_parameter_list = heuns_0.order_parameter_list # (num_couplings, total_time//dt)
import matplotlib.pyplot as plt
r = np.mean(order_parameter_list, axis=1)
stdr = np.std(order_parameter_list, axis=1)
plt.ion()
fig, ax1 = plt.subplots()
ax1.plot(couplings,r,'.-')
ax2 = ax1.twinx()
ax2.plot(couplings,stdr,'r.-')
plt.show()
CUDA - Faster than Tensorflow implementation
If CUDA is available. You can install our another package, stdogpkg/cukuramoto (C)
pip install cukuramoto
from stdog.dynamics.kuramoto.cuheuns import CUHeuns as cuHeuns
heuns_0 = cuHeuns(adj, phases, omegas, couplings,
total_time, dt, block_size = 1024, transient = False)
heuns_0.run()
heuns_0.transient = True
heuns_0.total_time = total_time_transient
heuns_0.run()
order_parameter_list = heuns_0.order_parameter_list #
2.2 Spectral
Spectral Density
The Kernel Polynomial Method [1] can estimate the spectral density of large sparse Hermitan matrices with a computational cost almost linear. This method combines three key ingredients: the Chebyshev expansion + the stochastic trace estimator [2] + kernel smoothing.
import igraph as ig
import numpy as np
N = 3000
G = ig.Graph.Erdos_Renyi(N, 3/N)
W = np.array(G.get_adjacency().data, dtype=np.float64)
vals = np.linalg.eigvalsh(W).real
import stdog.spectra as spectra
from stdog.utils.misc import ig2sparse
W = ig2sparse(G)
num_moments = 300
num_vecs = 200
extra_points = 10
ek, rho = spectra.dos.kpm(W, num_moments, num_vecs, extra_points, device="/gpu:0")
import matplotlib.pyplot as plt
plt.hist(vals, density=True, bins=100, alpha=.9, color="steelblue")
plt.scatter(ek, rho, c="tomato", zorder=999, alpha=0.9, marker="d")
plt.ylim(0, 1)
plt.show()
Trace Functions through Stochastic Lanczos Quadrature (SLQ)[3]
Computing custom trace functions
from stdog.spectra.trace_function import slq
import tensorflow as tf
def trace_function(eig_vals):
return tf.exp(eig_vals)
num_vecs = 100
num_steps = 50
approximated_estrada_index, _ = slq(L_sparse, num_vecs, num_steps, trace_function, device="/gpu:0")
exact_estrada_index = np.sum(np.exp(vals_laplacian))
approximated_estrada_index, exact_estrada_index
The above code returns
(3058.012, 3063.16457163222)
Entropy
import scipy
import scipy.sparse
from stdog.spectra.trace_function import entropy as slq_entropy
def entropy(eig_vals):
s = 0.
for val in eig_vals:
if val > 0:
s += -val*np.log(val)
return s
L = np.array(G.laplacian(normalized=True), dtype=np.float64)
vals_laplacian = np.linalg.eigvalsh(L).real
exact_entropy = entropy(vals_laplacian)
L_sparse = scipy.sparse.coo_matrix(L)
num_vecs = 100
num_steps = 50
approximated_entropy = slq_entropy(
L_sparse, num_vecs, num_steps, device="/cpu:0")
approximated_entropy, exact_entropy
(-509.46283, -512.5283224633046)
References
1 - Wang, L.W., 1994. Calculating the density of states and optical-absorption spectra of large quantum systems by the plane-wave moments method. Physical Review B, 49(15), p.10154.
2 - Hutchinson, M.F., 1990. A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines. Communications in Statistics-Simulation and Computation, 19(2), pp.433-450.
3 - Ubaru, S., Chen, J., & Saad, Y. (2017). Fast Estimation of tr(f(A)) via Stochastic Lanczos Quadrature. SIAM Journal on Matrix Analysis and Applications, 38(4), 1075-1099.
3 - How to cite
Thomas Peron, Bruno Messias, Angélica S. Mata, Francisco A. Rodrigues, and Yamir Moreno. On the onset of synchronization of Kuramoto oscillators in scale-free networks. arXiv:1905.02256 (2019).
4 - Acknowledgements
This work has been supported also by FAPESP grants 11/50761-2 and 2015/22308-2. Research carriedout using the computational resources of the Center forMathematical Sciences Applied to Industry (CeMEAI)funded by FAPESP (grant 2013/07375-0).
Responsible authors
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file stdog-1.0.4.tar.gz
.
File metadata
- Download URL: stdog-1.0.4.tar.gz
- Upload date:
- Size: 35.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.35.0 CPython/3.7.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8cff1759ec437e8ec9ed4043c1fc6c874e8d2938d7234af8b5a9d4a72908cf21 |
|
MD5 | 6dca2e23cf209ae505326d9669788fdf |
|
BLAKE2b-256 | 883862d757768272ebab45689f1ac2565694bf734eca29fb8893d5d35e412c13 |