Find and read your project configuration files easily
Project description
Welcome to Stela
Stela were the "configuration files" of ancient times. This library aims to simplify your project configurations, from json, yaml, ini or toml files in a single Python dictionary, which values can be easily be overridden by environment variables.
Index
- Install
- Basic Use
- Environment Variables from Shell
- Using layered environments
- Customize Stela
- Advanced Use
- How Stela find the configuration files?
- How Stela find the Environment Variables?
- How Stela handle more complex cases?
- Full Lifecycle example
- When Stela read the data?
- Refreshing Stela settings
- How Stela read the dictionary values?
- All Stela Configuration Options
- Migrate from version 1.x
Install
$ pip install stela
Basic Use
For your project settings, you can create a pyproject.toml
file, and
under the table environment
add the key/values:
# pyproject.toml
[environment]
my_file_path = "/foo/bar"
my_database_credentials = "user@password:db" # faked data
On Python you can access this settings like this:
from stela import settings
db_conf = settings["my_database_credentials"]
# db_conf = "user@password:db"
Environment Variables from Shell
Stela will check first, for the requested key, his SCREAMING_SNAKE_CASE
format in environment memory or .env
file. If no data is found, Stela
will return the pyproject.toml
value.
For example, for my_database_credentials
Stela will look for
MY_DATABASE_CREDENTIALS
in the following order:
- Add
.env
data in python environment, overwriting original data if exists. - Check for
MY_DATABASE_CREDENTIALS
inos.environ
- Check for
my_database_credentials
inpyproject.toml
Using layered environments
For now, Stela are looking only for the environment
table in your
pyproject.toml
. But for layered environments you maybe need to define
your settings per environment layer (i.e. development, tests, staging,
production, etc.)
To achieve this, first define environment
sub-tables in
pyproject.toml
:
# pyproject.toml
[environment] # now is a shared data between environments
my_database_credentials = "user@password:db" # faked data
[environment.local]
my_file_path = "/local/foo/bar"
[environment.production]
my_file_path = "/server/foo/bar"
Then add use_environment_layers
in Stela options:
# pyproject.toml
[tool.stela]
use_environment_layers = true
[environment] # now is a shared data between environments
my_database_credentials = "user@password:db" # faked data
[environment.local]
my_file_path = "/local/foo/bar"
[environment.production]
my_file_path = "/server/foo/bar"
When you add use_environment_layers = true
in config, Stela will now
always try to find the current environment looking for the ENVIRONMENT
variable. If this variable is not defined, Stela will use the default
environment, if available. If not, will raise a
StelaEnvironmentNotFoundError
. To add a default environment:
# pyproject.toml
[tool.stela]
use_environment_layers = true
default_environment = "local"
[environment] # now is a shared data between environments
my_database_credentials = "user@password:db" # faked data
[environment.local]
my_file_path = "/local/foo/bar"
[environment.production]
my_file_path = "/server/foo/bar"
Customize Stela
Use the following variables to customize Stela behavior:
# You can also set these as environment variables too using STELA_ prefix.
# For example, environment_variable_name turns STELA_ENVIRONMENT_VARIABLE_NAME
[tool.stela]
environment_variable_name = "ENVIRONMENT" # The Environment variable
default_environment = "" # The default value for Environment variable
env_table = "environment" # The main environment table in pyproject.toml
use_environment_layers = false # Use environment layers
env_file = ".env" # dotenv file name
config_file_path = "." # relative path for configuration files
do_not_read_dotenv = False # If True, will load dotenv file in os.environ
dotenv_overwrites_memory = True # If True, will not overwrite keys from dotenv file if they exists on environ
Example:
# shell
$ export DJANGO_ENV=production
# pyproject.toml
[tool.stela]
use_environment_layers = true
environment_variable_name = "DJANGO_ENV"
env_table = "my_project.config"
[my_project.config]
project.debug = true
[my_project.config.production]
project.debug = false
# settings.py
from stela import settings
DEBUG = settings["project.debug"] # False from pyproject.toml or from PROJECT_DEBUG in environment
Advanced Use
For very large projects, you can use separate config files per
environment (like development.ini
, staging.ini
, etc.)
Also, you can use .yaml
, .ini
, .json
and .toml
files.
In all files, Stela will always respect nested data. Suppose a file
called development.ini
which contains:
[foo]
bar = value
As we know, Stela will convert data into a python dictionary:
{
"foo": {
"bar": "value"
}
}
You can use the settings like this:
from stela import settings
my_conf = settings["foo.bar"] # my_conf = "value"
This is possible because Stela uses under the hood the Scalpl library.
How Stela find the configuration files?
By default, Stela will use the value from ENVIRONMENT
environment
variable to find correspondent INI file. For example, if you set
ENVIRONMENT=development
Stela will look for development.ini
file in
project root.
You can change this behaviour inside pyproject.toml
file:
[tools.stela]
environment_variable_name = "ENVIRONMENT" # Default Enviroment variable name
config_file_extension = "INI" # YAML, TOML, JSON
config_file_prefix = "" # You can add a prefix before name - ex.: env_development.ini
config_file_suffix = "" # You can add a suffix after name - ex.: development_v1.ini
default_environment = "development" # use this if you do not want to define the ENVIRONMENT key
config_file_path = "." # relative path from project root for configuration files
How Stela find the Environment Variables?
We know Stela will try to find an environment variable using his
SCREAMING_SNAKE_CASE version. In this case, when the key is foo.bar
,
Stela will search for an env called FOO_BAR
in memory and dotenv
files, before returning his dict value. Also, you can add a
prefix/suffix in this name (ex.: MYPROJECT_FOO_BAR
). To do this,
define them in pyproject.toml
:
[tools.stela]
environment_prefix = "MYPROJECT_"
environment_suffix = ""
In above case, Stela will look for the MYPROJECT_FOO_BAR
env:
# FOO_BAR = "hello_world" or
# MYPROJECT_FOO_BAR = "hello world" if you define environment_prefix
from stela import settings
my_conf = settings["foo.bar"]
# my_conf = "hello world"
Also, you can define Stela to never get values from shell and/or dotenv, only from dictionary:
[tools.stela]
do_not_read_environment = true
do_not_read_dotenv = true
How Stela handle more complex cases?
Stela uses this lifecycle to handle the settings load:
The Pre-Load Phase (optional)
If defined, will always be the first step. To setup, create a
conf_stela.py
file on project root and use the pre_load
decorator
for your code. This function must return a valid python dictionary.
Pre-Load Example:
# conf_stela.py at project root
import plaster
from stela.decorators import pre_load
from stela.stela_options import StelaOptions
from typing import Dict, Any
@pre_load
def get_from_plaster(options: StelaOptions) -> Dict[Any, Any]:
"""Get data from plaster.
Must return a valid Python dictionary.
:param options: StelaOptions instance
:return dict
"""
env = options.current_environment # get current environment during lifecycle
config_uri = f"{env}.ini#myapp"
settings = plaster.get_settings(config_uri, 'my-settings')
return settings
The Load Phase
In this phase Stela will run 2 default loaders and a third optional custom loader (if defined) on this default order:
- Runs
embed
loader (retrieve data frompyproject.toml
, if exists) - Runs
file
loader (retrieve data from config files, if exists) - Runs
custom
loader if defined (fromcustom_load
decorator, if exists)
Each step updates data received from the previous step. You can change
this order, modifying the load_order
in config:
# Or STELA_LOAD_ORDER
[tool.stela]
# Default value is ["embed", "file", "custom"]
load_order = ["custom"]
Custom Load Example:
# conf_stela.py at project root
from stela.decorators import custom_load
from stela.stela_options import StelaOptions
from typing import Dict, Any
@custom_load
def remove_bad_data(data: Dict[Any, Any], options: StelaOptions) -> Dict[Any, Any]:
"""Remove bad data.
Must return a valid Python dictionary.
:param options: StelaOptions instance
:return dict
"""
can_remove_bad_data = options.dotenv_data.get("REMOVE_BAD_DATA") # reading dotenv during lifecycle
if can_remove_bad_data:
data.pop("bad_key", None)
return data
The Post-Load Phase
This is, always, the last phase.
# conf_stela.py at project root
import boto3
from stela.decorators import post_load
from stela import StelaOptions
from typing import Dict, Any
@post_load
def add_ssm_parameters(data: dict, options: StelaOptions) -> Dict[Any, Any]:
"""Load settings from SSM to current Stela data.
Data returned must be a Python Dictionary.
:param data (dict): Data parsed from previous phases
:param options (obj): Stela Options from pyproject.toml
:return Dict[Any, Any]
"""
ssm = boto3.client('ssm')
environment = options.current_environment
parameters = ssm.get_parameters_by_path(
Name=f'/foo/bar/{environment}',
WithDecryption=True
)
return parameters
Full Lifecycle example
# conf_stela.py at project root
from stela.decorators import pre_load, custom_load, post_load
from typing import Dict, Any
from stela import StelaOptions
@pre_load
def pre_load(options: StelaOptions) -> Dict[Any, Any]:
# data value is: {}
# Stela Options are available in options object.
return {"foo": "bar"}
@custom_load
def load(data: dict, options: StelaOptions) -> Dict[Any, Any]:
# data value is: {"foo": "bar", "test": True} from from pre_load and pyproject.toml
return {"has_dogs": True}
@post_load
def post_load(data: dict, options: StelaOptions) -> Dict[Any, Any]:
# data value is: {"foo": "bar", "has_dogs": True, "test": True}
return {"number_of_dogs": 1}
# Final data is {"foo": "bar", "has_dogs": True, "number_of_dogs": 1}
When Stela read the data?
Stela are imported once, at module level - project settings are load and immediately available:
from stela import settings
from flask import Flask
app = Flask(__name__)
app.config.update(
SECRET_KEY=settings["my_app_secret"] # will read from dict or MY_APP_SECRET value
)
@app.route("/")
def hello():
return f"Hello, Environment is {settings.stela_options.current_environment}"
Refreshing Stela settings
If you need to reload settings, use the stela.stela_reload
function:
from stela.utils import stela_reload
def test_different_environments(monkeypatch):
from stela import settings
assert settings.stela_options.current_environment == "test"
monkeypatch.setenv("ENVIRONMENT", "production")
settings = stela_reload()
assert settings.stela_options.current_environment == "production"
monkeypatch.delenv("ENVIRONMENT")
How Stela read the dictionary values?
Stela will respect the file format limitations. For example, INI files always return values as string, TOML files returning datetime objects, etc...
For environment variables, Stela will return value as string, by
default. For example: NUMBER_OF_CATS=3
will return a string.
You can set Stela to evaluate these values, as per
ast.literal_eval
rules. To do this, add in pyproject.toml
:
[tool.stela]
evaluate_data = true
All Stela Configuration Options
All configuration files can be override using a environment variable,
using the STELA_
prefix. For example, default_environment
turns
STELA_DEFAULT_ENVIRONMENT
.
# All keys and default values available in pyproject.toml
[tool.stela]
config_file_extension = "INI" # or YAML, TOML, JSON
config_file_path = "." # relative path from project root, for config files (i.e. .env, development.ini, etc.)
config_file_prefix = "" # You can add a prefix before name - ex.: env_development.ini
config_file_suffix = "" # You can add a suffix after name - ex.: development_v1.ini
default_environment = "" # The default value for Environment variable
do_not_read_environment = false # Do not read environment variables from shell
do_not_read_dotenv = false # Do not read dotenv file
env_file = ".env" # dotenv file name
env_table = "environment" # The main environment table in pyproject.toml
environment_prefix = "" # ex.: settings["foo.bar"] looks for MY_PREFIX_FOO_BAR
environment_suffix = "" # ex.: settings["foo.bar"] looks for FOO_BAR_MY_SUFFIX
environment_variable_name = "ENVIRONMENT" # The Environment variable
evaluate_data = false # Evaluate data received from config files
load_order = ["embed", "file", "custom"] # Default order for Loaders in Load Phase
show_logs = true # As per loguru settings.
use_environment_layers = false # Use environment layers
dotenv_overwrites_memory = True # If True, will not overwrite keys from dotenv file if they exists on environ
Migrate from version 1.x
- Support for Python 3.6 was dropped
- The
stela_reload
function now is imported now fromstela.utils
- The
@load
decorator now was renamed to@custom_load
- To mimic Stela load behavior from 1.x, please configure the old
lifecycle in
pyproject.toml
:
[tool.stela]
use_environment_layers = true
do_not_read_dotenv = true
load_order = ["file"] # or ["custom"] together with @custom_load decorator
Not working?
Dont panic. Get a towel and, please, open a issue.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.