Skip to main content

A Python package for stepwise estimation of latent class models with measurement and structural components. The package can also be used to fit mixture models with various observed random variables.

Project description

StepMix

PyPI version Build Documentation Status Code style: black Downloads Downloads arXiv

For StepMixR, please refer to this repository.

A Python package following the scikit-learn API for model-based clustering and generalized mixture modeling (latent class/profile analysis) of continuous and categorical data. StepMix handles missing values through Full Information Maximum Likelihood (FIML) and provides multiple stepwise Expectation-Maximization (EM) estimation methods based on pseudolikelihood theory. Additional features include support for covariates and distal outcomes, various simulation utilities, and non-parametric bootstrapping, which allows inference in semi-supervised and unsupervised settings.

Reference

If you find StepMix useful, please consider citing our arXiv preprint:

@article{morin2023stepmix,
  title={StepMix: A Python Package for Pseudo-Likelihood Estimation of Generalized Mixture Models with External Variables},
  author={Morin, Sacha and Legault, Robin and Bakk, Zsuzsa and Gigu{\`e}re, Charles-{\'E}douard and de la Sablonni{\`e}re, Roxane and Lacourse, {\'E}ric},
  journal={arXiv preprint arXiv:2304.03853},
  year={2023}
}

Install

You can install StepMix with pip, preferably in a virtual environment:

pip install stepmix

Quickstart

A StepMix mixture using categorical variables on a preloaded data matrix. StepMix accepts either numpy.arrayor pandas.DataFrame. Categories should be integer-encoded and 0-indexed.

from stepmix.stepmix import StepMix

# Categorical StepMix Model with 3 latent classes
model = StepMix(n_components=3, measurement="categorical")
model.fit(data)

# Allow missing values
model_nan = StepMix(n_components=3, measurement="categorical_nan")
model_nan.fit(data_nan)

For binary data you can also use measurement="binary" or measurement="binary_nan". For continuous data, you can fit a Gaussian Mixture with diagonal covariances using measurement="continuous" or measurement="continuous_nan".

Set verbose=1 for a detailed output.

Please refer to the StepMix tutorials to learn how to combine continuous and categorical data in the same model.

Tutorials

Detailed tutorials are available in notebooks:

  1. Generalized Mixture Models with StepMix: an in-depth look at how latent class models can be defined with StepMix. The tutorial uses the Iris Dataset as an example and covers:
    1. Continuous LCA models (latent profile analysis/gaussian mixture model);
    2. Binary LCA models;
    3. Categorical LCA models;
    4. Mixed variables mixture models (continuous and categorical data);
    5. Missing Values through Full-Information Maximum Likelihood.
  2. Stepwise Estimation with StepMix: a tutorial demonstrating how to define measurement and structural models. The tutorial discusses:
    1. LCA models with distal outcomes;
    2. LCA models with covariates;
    3. 1-step, 2-step and 3-step estimation;
    4. Corrections (BCH or ML) and other options for 3-step estimation.
  3. Model Selection: a short tutorial discussing:
    1. Selecting the number of components in a mixture model (n_components);
    2. Comparing models with fit indices: AIC and BIC.
  4. Parameters, Bootstrapping and CI: a tutorial discussing how to:
    1. Access StepMix parameters;
    2. Bootstrap StepMix estimators;
    3. Quickly plot confidence intervals.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stepmix-2.1.2.tar.gz (54.5 kB view details)

Uploaded Source

Built Distribution

stepmix-2.1.2-py3-none-any.whl (40.5 kB view details)

Uploaded Python 3

File details

Details for the file stepmix-2.1.2.tar.gz.

File metadata

  • Download URL: stepmix-2.1.2.tar.gz
  • Upload date:
  • Size: 54.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.28.1

File hashes

Hashes for stepmix-2.1.2.tar.gz
Algorithm Hash digest
SHA256 60f93e45dd4f8aebf8eb6dc91ce4c6c5f56da8644eeec2eca54cd316ce065710
MD5 35a4f2702b5131ba9e017a0bbc1e41f2
BLAKE2b-256 5e1c9c2fcf3786bf5aaa331321510e51a9b6e9842d25afc70dad3dfff93a76a5

See more details on using hashes here.

File details

Details for the file stepmix-2.1.2-py3-none-any.whl.

File metadata

  • Download URL: stepmix-2.1.2-py3-none-any.whl
  • Upload date:
  • Size: 40.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.28.1

File hashes

Hashes for stepmix-2.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 a9b0b855c2ec9d0120ef424441d03bdeb1067c243144d0acdd5c75f260fea998
MD5 5da2eb106556e70bcacac0e5c5aeb4e5
BLAKE2b-256 77877cfd2ec09c67d4ca066bb7ef1a1fb0b3e8508ede903924c6f0416f1d2a38

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page