Skip to main content

Evaluation dataset and tools from Middlebury Stereo Evaulation data 2014.

Project description

stereo-mideval

Python package for dataset and evaluation tools from the Middlebury stereo evaulation 2014 dataset. This project is in development by I3DR for evaluating stereo matching algorithms for use in stereo cameras. However, this project is fully open-source with no limitations to encorage and support others who may need this.

Compatibility

Compatible with python 3.5, 3.6, 3.7, 3.8 on Windows x64 Tested on Windows using Git Actions.

Actions Status
Actions Status

Install

pip install stereo-mideval

Features

  • Download scene data from Middlebury servers
  • Load disparity image and stereo pair from scene data
  • Display normalised colormaped disparity image
  • Convert disparity image to depth image using calibration file from scene data
  • Evaluation metrics of disparity image compared to ground truth disparity (rmse, mse, bad pixel percentage)

Examples

Download and display data from all scenes in Middlebury stereo dataset (2014)

import os
from stereomideval import Dataset

# Path to dowmload datasets
DATASET_FOLDER = os.path.join(os.getcwd(),"datasets")

# Create dataset folder
if not os.path.exists(DATASET_FOLDER):
    os.makedirs(DATASET_FOLDER)

# Initalise stereomideval Dataset object
stmid_dataset = Dataset()

# Get list of scene in dataset (2014) and iterate through them
for scene_name in stmid_dataset.get_scene_list():
    # Download dataset from middlebury servers
    # will only download it if it hasn't already been downloaded
    print("Downloading data for scene '"+scene_name+"'...")
    stmid_dataset.download_scene_data(scene_name,DATASET_FOLDER)
    # Load scene data from downloaded folder
    print("Loading data for scene '"+scene_name+"'...")
    scene_data = stmid_dataset.load_scene_data(scene_name,DATASET_FOLDER,True)

Download and display data from a single scene in Middlebury stereo dataset (2014)

import os
from stereomideval import Dataset

# Path to dowmload datasets
DATASET_FOLDER = os.path.join(os.getcwd(),"datasets")
# Scene name (see here for list of scenes: https://vision.middlebury.edu/stereo/data/scenes2014/)
SCENE_NAME = "Adirondack"

# Create dataset folder
if not os.path.exists(DATASET_FOLDER):
    os.makedirs(DATASET_FOLDER)

# Initalise stereomideval Dataset object
stmid_dataset = Dataset()

# Download dataset from middlebury servers
# will only download it if it hasn't already been downloaded
print("Downloading data for scene '"+SCENE_NAME+"'...")
stmid_dataset.download_scene_data(SCENE_NAME,DATASET_FOLDER)
# Load scene data from downloaded folder
print("Loading data for scene '"+SCENE_NAME+"'...")
stmid_dataset.load_scene_data(SCENE_NAME,DATASET_FOLDER,True,0)

Download and evaluatuate all scenes in Middlebury stereo dataset (2014)

import os
import numpy as np
from stereomideval import Dataset, Eval

dataset_folder = os.path.join(os.getcwd(),"datasets") #Path to dowmload datasets

# Create dataset folder
if not os.path.exists(dataset_folder):
    os.makedirs(dataset_folder)

# Initalise stereomideval objects
stmid_dataset = Dataset()
stmid_eval = Eval()

# Get list of scenes in Milddlebury's stereo dataset (2014) and iterate through them
for scene_name in stmid_dataset.get_scene_list():
    # Download dataset from middlebury servers
    # will only download it if it hasn't already been downloaded
    print("Downloading data for scene '"+scene_name+"'...")
    stmid_dataset.download_scene_data(scene_name,dataset_folder)
    # Load scene data from downloaded folder
    print("Loading data for scene '"+scene_name+"'...")
    scene_data = stmid_dataset.load_scene_data(scene_name,dataset_folder,True,1)
    gt_disp_image = scene_data.disp_image
    # Demonstate evaluation by comparing the ground truth to itelf with a bit of noise
    noise = np.random.normal(0, 1.5, gt_disp_image.shape)
    test_disp_image = gt_disp_image + noise
    rmse = stmid_eval.rmse(gt_disp_image,test_disp_image)
    bad_pix_error = stmid_eval.bad_pix_error(gt_disp_image,test_disp_image)
    print("RMSE: {:.2f}".format(rmse))
    print("Bad pixel 2.0: {:.2f}%".format(bad_pix_error))

Development

Upcomming features

  • Offline ranking by caching webpage table data

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stereo-mideval-1.0.17.tar.gz (17.7 kB view details)

Uploaded Source

Built Distribution

stereo_mideval-1.0.17-py3-none-any.whl (18.7 kB view details)

Uploaded Python 3

File details

Details for the file stereo-mideval-1.0.17.tar.gz.

File metadata

  • Download URL: stereo-mideval-1.0.17.tar.gz
  • Upload date:
  • Size: 17.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.8.6

File hashes

Hashes for stereo-mideval-1.0.17.tar.gz
Algorithm Hash digest
SHA256 93842da072a3aae5e32b91ddaf0ae97dda645a071b9981f6322015b9b90eaaeb
MD5 b200873850ea482960b2e8ca2431ffc4
BLAKE2b-256 4e01c53401193d5f61a46a74f8ea86d011776c3250cb5f097cb9610eb6bb67b5

See more details on using hashes here.

File details

Details for the file stereo_mideval-1.0.17-py3-none-any.whl.

File metadata

  • Download URL: stereo_mideval-1.0.17-py3-none-any.whl
  • Upload date:
  • Size: 18.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.8.6

File hashes

Hashes for stereo_mideval-1.0.17-py3-none-any.whl
Algorithm Hash digest
SHA256 21b0667818ca2d07120bc58f6fe53e33c577f4b6687dd568177c83966605f737
MD5 796aa431b1db719221e1b263ecf6fbe3
BLAKE2b-256 576e5c347709366e9b6af64ac8ddd8e24505a47755545d9f0a0e2f0dc244a5e5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page