Skip to main content

Evaluation dataset and tools from Middlebury Stereo Evaulation data 2014.

Project description

stereo-mideval

Python package for dataset and evaluation tools from the Middlebury stereo evaulation 2014 dataset. This project is in development by I3DR for evaluating stereo matching algorithms for use in stereo cameras. However, this project is fully open-source with no limitations to encorage and support others who may need this.

Compatibility

Compatible with python 3.5, 3.6, 3.7, 3.8 on Windows x64 Tested on Windows using Git Actions.

Actions Status
Actions Status

Install

pip install stereo-mideval

Features

  • Download scene data from Middlebury servers
  • Load disparity image and stereo pair from scene data
  • Display normalised colormaped disparity image
  • Convert disparity image to depth image using calibration file from scene data
  • Evaluation metrics of disparity image compared to ground truth disparity (rmse, mse, bad pixel percentage)

Examples

Download and display data from all scenes in Middlebury stereo dataset (2014)

import os
from stereomideval import Dataset

# Path to dowmload datasets
DATASET_FOLDER = os.path.join(os.getcwd(),"datasets")

# Create dataset folder
if not os.path.exists(DATASET_FOLDER):
    os.makedirs(DATASET_FOLDER)

# Initalise stereomideval Dataset object
stmid_dataset = Dataset()

# Get list of scene in dataset (2014) and iterate through them
for scene_name in stmid_dataset.get_scene_list():
    # Download dataset from middlebury servers
    # will only download it if it hasn't already been downloaded
    print("Downloading data for scene '"+scene_name+"'...")
    stmid_dataset.download_scene_data(scene_name,DATASET_FOLDER)
    # Load scene data from downloaded folder
    print("Loading data for scene '"+scene_name+"'...")
    scene_data = stmid_dataset.load_scene_data(scene_name,DATASET_FOLDER,True)

Download and display data from a single scene in Middlebury stereo dataset (2014)

import os
from stereomideval import Dataset

# Path to dowmload datasets
DATASET_FOLDER = os.path.join(os.getcwd(),"datasets")
# Scene name (see here for list of scenes: https://vision.middlebury.edu/stereo/data/scenes2014/)
SCENE_NAME = "Adirondack"

# Create dataset folder
if not os.path.exists(DATASET_FOLDER):
    os.makedirs(DATASET_FOLDER)

# Initalise stereomideval Dataset object
stmid_dataset = Dataset()

# Download dataset from middlebury servers
# will only download it if it hasn't already been downloaded
print("Downloading data for scene '"+SCENE_NAME+"'...")
stmid_dataset.download_scene_data(SCENE_NAME,DATASET_FOLDER)
# Load scene data from downloaded folder
print("Loading data for scene '"+SCENE_NAME+"'...")
stmid_dataset.load_scene_data(SCENE_NAME,DATASET_FOLDER,True,0)

Download and evaluatuate all scenes in Middlebury stereo dataset (2014)

import os
import numpy as np
from stereomideval import Dataset, Eval

dataset_folder = os.path.join(os.getcwd(),"datasets") #Path to dowmload datasets

# Create dataset folder
if not os.path.exists(dataset_folder):
    os.makedirs(dataset_folder)

# Initalise stereomideval objects
stmid_dataset = Dataset()
stmid_eval = Eval()

# Get list of scenes in Milddlebury's stereo dataset (2014) and iterate through them
for scene_name in stmid_dataset.get_scene_list():
    # Download dataset from middlebury servers
    # will only download it if it hasn't already been downloaded
    print("Downloading data for scene '"+scene_name+"'...")
    stmid_dataset.download_scene_data(scene_name,dataset_folder)
    # Load scene data from downloaded folder
    print("Loading data for scene '"+scene_name+"'...")
    scene_data = stmid_dataset.load_scene_data(scene_name,dataset_folder,True,1)
    gt_disp_image = scene_data.disp_image
    # Demonstate evaluation by comparing the ground truth to itelf with a bit of noise
    noise = np.random.normal(0, 1.5, gt_disp_image.shape)
    test_disp_image = gt_disp_image + noise
    rmse = stmid_eval.rmse(gt_disp_image,test_disp_image)
    bad_pix_error = stmid_eval.bad_pix_error(gt_disp_image,test_disp_image)
    print("RMSE: {:.2f}".format(rmse))
    print("Bad pixel 2.0: {:.2f}%".format(bad_pix_error))

Development

Upcomming features

  • Offline ranking by caching webpage table data

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stereo-mideval-1.0.20.tar.gz (18.1 kB view details)

Uploaded Source

Built Distribution

stereo_mideval-1.0.20-py3-none-any.whl (19.2 kB view details)

Uploaded Python 3

File details

Details for the file stereo-mideval-1.0.20.tar.gz.

File metadata

  • Download URL: stereo-mideval-1.0.20.tar.gz
  • Upload date:
  • Size: 18.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.6

File hashes

Hashes for stereo-mideval-1.0.20.tar.gz
Algorithm Hash digest
SHA256 811cf01afe6a2063d7bbc768c09b6eaf23ee7b3db7fa12ba21d44c24d762f7ed
MD5 cbbea200ed60bd5468a1763436f15b80
BLAKE2b-256 82eb1bde8e679ccb651771e39815502fc76ae4efe026d2b1ff520c65555547ee

See more details on using hashes here.

File details

Details for the file stereo_mideval-1.0.20-py3-none-any.whl.

File metadata

  • Download URL: stereo_mideval-1.0.20-py3-none-any.whl
  • Upload date:
  • Size: 19.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.6

File hashes

Hashes for stereo_mideval-1.0.20-py3-none-any.whl
Algorithm Hash digest
SHA256 843518c42527fe56a3657a796056ea36a259987f17eb1f058a3a92346b521538
MD5 0615683d790053cd3b73c0b3d9dfdf2b
BLAKE2b-256 2c85f216b71ba5eefe2311ff011b84d18e36ba475531a75622146bc508bb5e40

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page