Skip to main content

Automated behavioral event detection in bio-logging data.

Project description

stickleback

A machine learning pipeline for detecting fine-scale behavioral events in bio-logging data.

Installation

Install with pip.

pip install stickleback

Key concepts

  • Behavioral events are brief behaviors that can be represented as a point in time, e.g. feeding or social interactions.
  • High-resolution bio-logging data (e.g. from accelerometers and magnetometers) are multi-variate time series. Traditional classifiers struggle with time series data.
  • stickleback takes a time series classification approach to detect behavioral events in longitudinal bio-logging data.

Quick start

Load sample data

The included sensor data contains the depth, pitch, roll, and speed of six blue whales at 10 Hz, and the event data contains the times of lunge-feeding behaviors.

import pandas as pd
import sktime.classification.interval_based
import sktime.classification.compose
from stickleback.stickleback import Stickleback
import stickleback.data
import stickleback.util
import stickleback.visualize

# Load sample data
sensors, events = stickleback.data.load_lunges()

# Split into test and train (3 deployments each)
def split_dict(d, ks):
    dict1 = {k: v for k, v in d.items() if k in ks}
    dict2 = {k: v for k, v in d.items() if k not in ks}
    return dict1, dict2

test_deployids = list(sensors.keys())[0:2]
sensors_test, sensors_train = split_dict(sensors, test_deployids)
events_test, events_train = split_dict(events, test_deployids)
sensors[test_deployids[0]]
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
depth pitch roll speed
datetime
2018-09-05 11:55:52.400 14.911083 -0.059933 -0.012899 4.274450
2018-09-05 11:55:52.500 14.910864 -0.067072 -0.010815 4.044154
2018-09-05 11:55:52.600 14.915853 -0.075173 -0.008335 3.820568
2018-09-05 11:55:52.700 14.923190 -0.085225 -0.005727 3.602702
2018-09-05 11:55:52.800 14.928955 -0.096173 -0.002803 3.432342
... ... ... ... ...
2018-09-05 13:55:51.900 22.552306 -0.010861 0.005441 2.246061
2018-09-05 13:55:52.000 22.571625 -0.010534 0.004674 2.257525
2018-09-05 13:55:52.100 22.588129 -0.010081 0.003841 2.267966
2018-09-05 13:55:52.200 22.603341 -0.009627 0.003042 2.272327
2018-09-05 13:55:52.300 22.619537 -0.009355 0.002164 2.277328

72000 rows × 4 columns

Visualize sensor and event data

plot_sensors_events() produces an interactive figure for exploring bio-logger data.

# Choose one deployment to visualize
deployid = list(sensors.keys())[0]
stickleback.visualize.plot_sensors_events(deployid, sensors, events)

Animated loop of interactively exploring data with plot_sensors_events()

Define model

Initialize a Stickleback model using Supervised Time Series Forests and a 10 s window.

# Supervised Time Series Forests ensembled across the columns of `sensors`
cols = sensors[list(sensors.keys())[0]].columns
tsc = sktime.classification.interval_based.SupervisedTimeSeriesForest(n_estimators=2)
stsf = sktime.classification.compose.ColumnEnsembleClassifier(
    estimators = [('STSF_{}'.format(col),
                   tsc,
                   [i])
                  for i, col in enumerate(cols)]
)

sb = Stickleback(
    local_clf=stsf,
    win_size=50,
    tol=pd.Timedelta("5s"),
    nth=10,
    n_folds=4
)

Fit model

Fit the Stickleback object to the training data.

sb.fit(sensors_train, events_train)

Test model

Use the fitted Stickleback model to predict occurence of lunge-feeding events in the test dataset.

predictions = sb.predict(sensors_test)

Assess results

Use the temporal tolerance (in this example, 5 s) to assess model predictions. Visualize with an outcome table and an interactive visualization. In the figure, blue = true positive, hollow red = false negative, and solid red = false positive.

outcomes = sb.assess(predictions, events_test)
stickleback.visualize.outcome_table(outcomes, sensors_test)
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
F1 TP FP FN Duration (hours)
deployid
bw180905-49 0.965517 42 1 2 1.999972
bw180905-53 0.981132 26 1 0 1.999972
deployid = list(events_test.keys())[0]
stickleback.visualize.plot_predictions(deployid, 
                                       sensors_test, 
                                       predictions, 
                                       outcomes)

Animated loop of interactively exploring predictions with plot_predictions()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stickleback-0.1.0.tar.gz (13.7 kB view details)

Uploaded Source

Built Distribution

stickleback-0.1.0-py3-none-any.whl (15.5 MB view details)

Uploaded Python 3

File details

Details for the file stickleback-0.1.0.tar.gz.

File metadata

  • Download URL: stickleback-0.1.0.tar.gz
  • Upload date:
  • Size: 13.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.0

File hashes

Hashes for stickleback-0.1.0.tar.gz
Algorithm Hash digest
SHA256 96ea6bd1ed6931ac3fe793b815a6440c3fea500490130416cb64fe54b33fb0f5
MD5 13a0458412c35217c3446ed4a3df20b3
BLAKE2b-256 336028018ae01bead491777d38514989b1b38647e41435829fcedc808da8beb9

See more details on using hashes here.

File details

Details for the file stickleback-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: stickleback-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 15.5 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.0

File hashes

Hashes for stickleback-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 5c4095dbf8e7718507f452c3a67b301e3a7d0c1e155ee4645752a8489ce6e4d3
MD5 5a81329d5f72051aa478ac68ccbc865f
BLAKE2b-256 548c3be5a401419d38476030db08093759ba10e8ab95cacdbd8d47dfb4db38ca

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page