Skip to main content

A fast library for analyzing with quantum stabilizer circuits.

Project description

Stim

Stim is a fast simulator for quantum stabilizer circuits.

API references are available on the stim github wiki: https://github.com/quantumlib/stim/wiki

Stim can be installed into a python 3 environment using pip:

pip install stim

Once stim is installed, you can import stim and use it. There are three supported use cases:

  1. Interactive simulation with stim.TableauSimulator.
  2. High speed sampling with samplers compiled from stim.Circuit.
  3. Independent exploration using stim.Tableau and stim.PauliString.

Interactive Simulation

Use stim.TableauSimulator to simulate operations one by one while inspecting the results:

import stim

s = stim.TableauSimulator()

# Create a GHZ state.
s.h(0)
s.cnot(0, 1)
s.cnot(0, 2)

# Look at the simulator state re-inverted to be forwards:
t = s.current_inverse_tableau()
print(t**-1)
# prints:
# +-xz-xz-xz-
# | ++ ++ ++
# | ZX _Z _Z
# | _X XZ __
# | _X __ XZ

# Measure the GHZ state.
print(s.measure_many(0, 1, 2))
# prints one of:
# [True, True, True]
# or:
# [False, False, False]

High Speed Sampling

By creating a stim.Circuit and compiling it into a sampler, samples can be generated very quickly:

import stim

# Create a circuit that measures a large GHZ state.
c = stim.Circuit()
c.append("H", [0])
for k in range(1, 30):
    c.append("CNOT", [0, k])
c.append("M", range(30))

# Compile the circuit into a high performance sampler.
sampler = c.compile_sampler()

# Collect a batch of samples.
# Note: the ideal batch size, in terms of speed per sample, is roughly 1024.
# Smaller batches are slower because they are not sufficiently vectorized.
# Bigger batches are slower because they use more memory.
batch = sampler.sample(1024)
print(type(batch))  # numpy.ndarray
print(batch.dtype)  # numpy.uint8
print(batch.shape)  # (1024, 30)
print(batch)
# Prints something like:
# [[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  ...
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]]

This also works on circuits that include noise:

import stim
import numpy as np

c = stim.Circuit("""
    X_ERROR(0.1) 0
    Y_ERROR(0.2) 1
    Z_ERROR(0.3) 2
    DEPOLARIZE1(0.4) 3
    DEPOLARIZE2(0.5) 4 5
    M 0 1 2 3 4 5
""")
batch = c.compile_sampler().sample(2**20)
print(np.mean(batch, axis=0).round(3))
# Prints something like:
# [0.1   0.2   0.    0.267 0.267 0.266]

You can also sample annotated detection events using stim.Circuit.compile_detector_sampler.

For a list of gates that can appear in a stim.Circuit, see the latest readme on github.

Independent Exploration

Stim provides data types stim.PauliString and stim.Tableau, which support a variety of fast operations.

import stim

xx = stim.PauliString("XX")
yy = stim.PauliString("YY")
assert xx * yy == -stim.PauliString("ZZ")

s = stim.Tableau.from_named_gate("S")
print(repr(s))
# prints:
# stim.Tableau.from_conjugated_generators(
#     xs=[
#         stim.PauliString("+Y"),
#     ],
#     zs=[
#         stim.PauliString("+Z"),
#     ],
# )

s_dag = stim.Tableau.from_named_gate("S_DAG")
assert s**-1 == s_dag
assert s**1000000003 == s_dag

cnot = stim.Tableau.from_named_gate("CNOT")
cz = stim.Tableau.from_named_gate("CZ")
h = stim.Tableau.from_named_gate("H")
t = stim.Tableau(5)
t.append(cnot, [1, 4])
t.append(h, [4])
t.append(cz, [1, 4])
t.prepend(h, [4])
assert t == stim.Tableau(5)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stim-1.14.0.tar.gz (814.0 kB view details)

Uploaded Source

Built Distributions

stim-1.14.0-cp312-cp312-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

stim-1.14.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

stim-1.14.0-cp312-cp312-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

stim-1.14.0-cp312-cp312-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

stim-1.14.0-cp311-cp311-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

stim-1.14.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

stim-1.14.0-cp311-cp311-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

stim-1.14.0-cp311-cp311-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

stim-1.14.0-cp310-cp310-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

stim-1.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

stim-1.14.0-cp310-cp310-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

stim-1.14.0-cp310-cp310-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

stim-1.14.0-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

stim-1.14.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

stim-1.14.0-cp39-cp39-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

stim-1.14.0-cp39-cp39-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

stim-1.14.0-cp38-cp38-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

stim-1.14.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

stim-1.14.0-cp38-cp38-macosx_11_0_arm64.whl (3.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

stim-1.14.0-cp38-cp38-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

stim-1.14.0-cp37-cp37m-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

stim-1.14.0-cp37-cp37m-win32.whl (2.2 MB view details)

Uploaded CPython 3.7m Windows x86

stim-1.14.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

stim-1.14.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (5.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

stim-1.14.0-cp37-cp37m-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

stim-1.14.0-cp36-cp36m-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.6m Windows x86-64

stim-1.14.0-cp36-cp36m-win32.whl (2.2 MB view details)

Uploaded CPython 3.6m Windows x86

stim-1.14.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

stim-1.14.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (5.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

stim-1.14.0-cp36-cp36m-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file stim-1.14.0.tar.gz.

File metadata

  • Download URL: stim-1.14.0.tar.gz
  • Upload date:
  • Size: 814.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.0

File hashes

Hashes for stim-1.14.0.tar.gz
Algorithm Hash digest
SHA256 a0bbac90e81a50084ec104a04f6075956a266083370dd9e73210aabf770b469d
MD5 054f61fa5968fa1a40f1a1cd195d4102
BLAKE2b-256 fa5bc61d6fe29a2f3a57d50b61fabcb82e572390a6340a04567751d469344b74

See more details on using hashes here.

File details

Details for the file stim-1.14.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: stim-1.14.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.0

File hashes

Hashes for stim-1.14.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 39425614ad476b0f8ddf75413a0710de00d1970c2a5b90ec417e221a1412d42c
MD5 d2aeab6af017044031cc993d9ba81191
BLAKE2b-256 0654aa1269cab0e342de31f3122dd0c8e06be4624c1ca65bfdd09ee2ac4efb16

See more details on using hashes here.

File details

Details for the file stim-1.14.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.14.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5ff7f6fee2bd6e1bc718b4e57205d6d3fc6d3c292c3eafd22fdb7a8d7b010a1b
MD5 d4861e049a741ef55db69ca318111fcd
BLAKE2b-256 1971de7c2a9e6cfe0ea078cdea34cb9d39a6898964880212254f47834e629779

See more details on using hashes here.

File details

Details for the file stim-1.14.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.14.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5a86f9ccf0be4e4cab6ba246c320aec5ade9aab5c586d8afa353440b7e6372b8
MD5 37ecc90a1c858f1a9d4d43219f67297c
BLAKE2b-256 022f15d0ccba620aefdeb1c064f97eca04d57525611d7bc06e7934e96f02e8ec

See more details on using hashes here.

File details

Details for the file stim-1.14.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.14.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 383464d27a7f2a692fe4877607e9f894f6edaf3e7b5ed2d55d3872794e0cfd0b
MD5 d7551164d9d8fa1867e01ba15def48c8
BLAKE2b-256 131b9cc8cf338235a7585a11aae5d6c237bea2bbd6191063d08790bf402e5c33

See more details on using hashes here.

File details

Details for the file stim-1.14.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: stim-1.14.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.0

File hashes

Hashes for stim-1.14.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ebe6fae7aa3b80d38deb662e4e410686d3af8c6a63eac44ae424b7d26e3726c4
MD5 550ce138a3fd84f88b76d4357aef716f
BLAKE2b-256 0b55bc54681d0969f400b08f562f946e2cad4216c4d5699982f6ba9bff177b57

See more details on using hashes here.

File details

Details for the file stim-1.14.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.14.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cb34d8ac0d13b604af70de0a6a58191045b4f3d09fc1ffedd91683315d1c99a6
MD5 6b4986e98f569c1092795f1a2729c136
BLAKE2b-256 30351fb567928b10a37d541bc809ac0883fdcd9f89b00b50ecf1e1761596a481

See more details on using hashes here.

File details

Details for the file stim-1.14.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.14.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0716c47bf5090db014373b44f471467f88b1a019698741bee189afdcb0dd3f19
MD5 1cca2e614e5cbb75974b0eb652ecbefd
BLAKE2b-256 1195497325c2bf8f83782d1c5217e58cd736e67545cdadf9f909b120089a5e64

See more details on using hashes here.

File details

Details for the file stim-1.14.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.14.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ea0f96c63a2d278b5eeb87ea1faea23ef5be9a7ae3bb16fcfa67cd00792471bc
MD5 8c9e072b69e0d5c54b5a5d5b07908f3c
BLAKE2b-256 9685c928e75b52ce91d74c409c1cf2537c8b6e91176567ae4d5283b94e421951

See more details on using hashes here.

File details

Details for the file stim-1.14.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: stim-1.14.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.0

File hashes

Hashes for stim-1.14.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c42ced0f4432b15954b88b93905e4f3815ee7c6b827f40917b74799b0f4fa3a7
MD5 b93172c97b74384aba439e3cd428c56b
BLAKE2b-256 ab7db5efb84c060059ab14791a79213a38412273e81ec203dc7ec3ca528d64a9

See more details on using hashes here.

File details

Details for the file stim-1.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3568b4d79e90287aeb12581cb9b7a854e223427a95d19ea838d918b5d40431ea
MD5 faa3ebf96bb6d42f4c4cc7b24b279ecf
BLAKE2b-256 c9057902e01f80a6ab6a6a318d3a2942f1c31fbac5225d3021f7953150f2f0ce

See more details on using hashes here.

File details

Details for the file stim-1.14.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.14.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 13b1814cef65f591238f84be62c64c7cdd2494998a92911812207a69e52cbed6
MD5 b2f07d945b948116421e1b5c26d6b0a5
BLAKE2b-256 0db62a745f9bdfb6bdf8aa8a3314e2a621b7dd0d482f34bc639abee5bdd1e8f3

See more details on using hashes here.

File details

Details for the file stim-1.14.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.14.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c01b47ddc708aadc36a8a4b2f4873c54836120565f24b6a6b92ad7c650b1df58
MD5 f3589412e586fae1ecf964bce8812f0e
BLAKE2b-256 efdc90c512151ea0428f6e3e8435b964e8e09bcade78336737a4c25ae01dcdea

See more details on using hashes here.

File details

Details for the file stim-1.14.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: stim-1.14.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.0

File hashes

Hashes for stim-1.14.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 19b4aab97e347bafc03d95231025cab5abc93151611b6a811ccf4f13df86cd66
MD5 a9b93fc06b108c1a904cfcf2822c135e
BLAKE2b-256 0b73a0db8eb3e200a703d476a8c9091caee71b00d324d6bcdf3fe085dbfbe8ad

See more details on using hashes here.

File details

Details for the file stim-1.14.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.14.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5344d1abe2c9a7382942c634c8c8fd77023ef1b04378c8db400bf3c02c010d10
MD5 a550b2bf3b336cedf69124376be46e28
BLAKE2b-256 c6a357cbc4b8e5c5b3c3361127d0ba1aa6df4a5af18cade80d82291dedd9fde5

See more details on using hashes here.

File details

Details for the file stim-1.14.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.14.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 651c72a98e24304bb36e92d79c98024628133fb7c39681dbe8704a988c930ad6
MD5 4019f7c3b9146b6e24bf246eb621719e
BLAKE2b-256 056dd19eec8ab1b4790d43f7d3055bb5d1cba7c85bc16115c49da0c3dcf1eba2

See more details on using hashes here.

File details

Details for the file stim-1.14.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.14.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 81a3bee99f98f362fd9e124e5c6488fe8abc52200c2a7eab2976930c29b2fc43
MD5 1130d219db24bec3c3cb5fe3fc78f8af
BLAKE2b-256 cf2d1b0b0c571881161971167ffbeeed8c7459e7ee87d0a9f0aa62bd05c2458a

See more details on using hashes here.

File details

Details for the file stim-1.14.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: stim-1.14.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.0

File hashes

Hashes for stim-1.14.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0a8cfa9c601329619eedadd11a33acc356899729370b96c1f423b2e22a49eb98
MD5 3e5b6b59ab9a28936b6ec11206a6dcaf
BLAKE2b-256 88f542157550597978703db1ff4630ed2945b7788648d9fbab584879c51aac2d

See more details on using hashes here.

File details

Details for the file stim-1.14.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.14.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 04587a59bb0d9b756d3cb9367f1ebe02fb30ea8b1330da7f4f99b71cd08e3f40
MD5 6b7cdcb42d1d38215c3e93cfdc278cfa
BLAKE2b-256 8eefdbd6ae3b2bf414024f736da0f7cf115011437fc8c385e979496e1a845ba9

See more details on using hashes here.

File details

Details for the file stim-1.14.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.14.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 66a77bf836fb5cf146befd215615c1144dc150b855c3226e39e6eb6e5d412d4f
MD5 69429c1cb8a2dbe52e19440668f8cc17
BLAKE2b-256 654714a0e345a9dfdbbdd31ec526754950e9e5a47e8c0461c574ab2e8c0e9a70

See more details on using hashes here.

File details

Details for the file stim-1.14.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.14.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d685d25af2d604063d9cdda773d8f3404747cbcf9346ddac737b1ee552b25ea4
MD5 43412dbd544f1d571269340b480a6dad
BLAKE2b-256 e16a9167869b841bb413a6432f081629af706bbc9e2612706612900c3a936f0d

See more details on using hashes here.

File details

Details for the file stim-1.14.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: stim-1.14.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.0

File hashes

Hashes for stim-1.14.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c4269141eb824cfede171d44a74665f66d088ea227ddccc9b2bf05575948c172
MD5 db4a9dbcddff7960df32a1820ad3ee3b
BLAKE2b-256 a380ed9b7c81932ec4fd6ba610499151263e31698e883c59a2800f151a0691b0

See more details on using hashes here.

File details

Details for the file stim-1.14.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: stim-1.14.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.0

File hashes

Hashes for stim-1.14.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 65e0ba08440c6d871d319f9eba196ac9360c22396fb4b07732c5730c76a3d8e7
MD5 bd944a9f4c5b903594c2c9642691b4cb
BLAKE2b-256 7a61f28c9ef4f468e1acab91bd185c1159859fc2cbb35f8fffe14918e977299f

See more details on using hashes here.

File details

Details for the file stim-1.14.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.14.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7b61e3cc13aa8f2bdedd0194c42414b56a8f024d06f2ef4d745b77f99109cdad
MD5 07978b971ce057cf3056ab53e6395469
BLAKE2b-256 f483760cfb1d93a7bbb7f9f77d9ab9e3c12de654dbb314f6c779dfbc8aca37c4

See more details on using hashes here.

File details

Details for the file stim-1.14.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for stim-1.14.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7855eca741b27d22d7964bf3bc7b509d381a329786f33f5f1b4656ac9968269f
MD5 8c8d45f0d0cb73d8cc0fa2326ade4d0d
BLAKE2b-256 fd5b5d2b06b73823a30c4d6a985d3d4a70aadd381f9508639b8cd1133df71176

See more details on using hashes here.

File details

Details for the file stim-1.14.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.14.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 422a7f12a203be20364fc88c0373a0e0a8b6141762d8cb1a997e01724d8a1cb6
MD5 2c5e43b5d2829189c5124fff64b89058
BLAKE2b-256 bd46217d9d24563a266e464eeb44ab6e66aa661f5e1ca4437fc9f559c5d6e1e8

See more details on using hashes here.

File details

Details for the file stim-1.14.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: stim-1.14.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.0

File hashes

Hashes for stim-1.14.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 c7492aeb319ba5d467937ef43b63e25a660891fa2b051b444e12f9dd307a26db
MD5 373fc8a3bb0cbaf9ac2d44f44d158bb0
BLAKE2b-256 73da71617d51fc2a8001592a33b927a8b70f60e5f63259b51acded173f07605c

See more details on using hashes here.

File details

Details for the file stim-1.14.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: stim-1.14.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.0

File hashes

Hashes for stim-1.14.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 861ff5c327b263f68e64e11ea00a450cedf6246645a684ebedf7168c00c606e0
MD5 9d5f19ee9a9a0598023c313145b1f286
BLAKE2b-256 6d6a18fe301c39807c755647dbcb566ba6e0d14a933d9642b3c525fd45b7d178

See more details on using hashes here.

File details

Details for the file stim-1.14.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.14.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b44935d177a56c5fdebf3283088f1014a7271f15cfcf8cf21ccb50604abb95e7
MD5 e3f3178793c05de7bd23930b20249a7d
BLAKE2b-256 487388960bb9064ad000fc9338ba022cc67865d16e1a9e513cf9ce9261280af7

See more details on using hashes here.

File details

Details for the file stim-1.14.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for stim-1.14.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ab583c0d935bae3dd9762c9eb92d634e1cd511fdc9b7f688158312bd24e8de1b
MD5 efa64009bc92cf1ad791fba794e4ff38
BLAKE2b-256 b838fabf8bd067308c1caf038bdc7f3f5bc7980f0f22e7f10907eee27235871d

See more details on using hashes here.

File details

Details for the file stim-1.14.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.14.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 365a0a4afb0b52653d945daec918a53de63739960409b201c25878dce665b3ab
MD5 7e2987938f10be2ed9f2771c911d4c13
BLAKE2b-256 7927394fd17a4c2d3112f50e34cd12d0771d5701b920884121a095626e5ffbb5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page