Skip to main content

A fast library for analyzing with quantum stabilizer circuits.

Project description

Stim

Stim is a fast simulator for quantum stabilizer circuits.

API references are available on the stim github wiki: https://github.com/quantumlib/stim/wiki

Stim can be installed into a python 3 environment using pip:

pip install stim

Once stim is installed, you can import stim and use it. There are three supported use cases:

  1. Interactive simulation with stim.TableauSimulator.
  2. High speed sampling with samplers compiled from stim.Circuit.
  3. Independent exploration using stim.Tableau and stim.PauliString.

Interactive Simulation

Use stim.TableauSimulator to simulate operations one by one while inspecting the results:

import stim

s = stim.TableauSimulator()

# Create a GHZ state.
s.h(0)
s.cnot(0, 1)
s.cnot(0, 2)

# Look at the simulator state re-inverted to be forwards:
t = s.current_inverse_tableau()
print(t**-1)
# prints:
# +-xz-xz-xz-
# | ++ ++ ++
# | ZX _Z _Z
# | _X XZ __
# | _X __ XZ

# Measure the GHZ state.
print(s.measure_many(0, 1, 2))
# prints one of:
# [True, True, True]
# or:
# [False, False, False]

High Speed Sampling

By creating a stim.Circuit and compiling it into a sampler, samples can be generated very quickly:

import stim

# Create a circuit that measures a large GHZ state.
c = stim.Circuit()
c.append("H", [0])
for k in range(1, 30):
    c.append("CNOT", [0, k])
c.append("M", range(30))

# Compile the circuit into a high performance sampler.
sampler = c.compile_sampler()

# Collect a batch of samples.
# Note: the ideal batch size, in terms of speed per sample, is roughly 1024.
# Smaller batches are slower because they are not sufficiently vectorized.
# Bigger batches are slower because they use more memory.
batch = sampler.sample(1024)
print(type(batch))  # numpy.ndarray
print(batch.dtype)  # numpy.uint8
print(batch.shape)  # (1024, 30)
print(batch)
# Prints something like:
# [[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  ...
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
#  [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
#  [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]]

This also works on circuits that include noise:

import stim
import numpy as np

c = stim.Circuit("""
    X_ERROR(0.1) 0
    Y_ERROR(0.2) 1
    Z_ERROR(0.3) 2
    DEPOLARIZE1(0.4) 3
    DEPOLARIZE2(0.5) 4 5
    M 0 1 2 3 4 5
""")
batch = c.compile_sampler().sample(2**20)
print(np.mean(batch, axis=0).round(3))
# Prints something like:
# [0.1   0.2   0.    0.267 0.267 0.266]

You can also sample annotated detection events using stim.Circuit.compile_detector_sampler.

For a list of gates that can appear in a stim.Circuit, see the latest readme on github.

Independent Exploration

Stim provides data types stim.PauliString and stim.Tableau, which support a variety of fast operations.

import stim

xx = stim.PauliString("XX")
yy = stim.PauliString("YY")
assert xx * yy == -stim.PauliString("ZZ")

s = stim.Tableau.from_named_gate("S")
print(repr(s))
# prints:
# stim.Tableau.from_conjugated_generators(
#     xs=[
#         stim.PauliString("+Y"),
#     ],
#     zs=[
#         stim.PauliString("+Z"),
#     ],
# )

s_dag = stim.Tableau.from_named_gate("S_DAG")
assert s**-1 == s_dag
assert s**1000000003 == s_dag

cnot = stim.Tableau.from_named_gate("CNOT")
cz = stim.Tableau.from_named_gate("CZ")
h = stim.Tableau.from_named_gate("H")
t = stim.Tableau(5)
t.append(cnot, [1, 4])
t.append(h, [4])
t.append(cz, [1, 4])
t.prepend(h, [4])
assert t == stim.Tableau(5)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stim-1.15.0.tar.gz (853.2 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

stim-1.15.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

stim-1.15.0-cp313-cp313-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

stim-1.15.0-cp313-cp313-macosx_10_13_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

stim-1.15.0-cp312-cp312-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.12Windows x86-64

stim-1.15.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

stim-1.15.0-cp312-cp312-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

stim-1.15.0-cp312-cp312-macosx_10_13_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

stim-1.15.0-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11Windows x86-64

stim-1.15.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

stim-1.15.0-cp311-cp311-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

stim-1.15.0-cp311-cp311-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

stim-1.15.0-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10Windows x86-64

stim-1.15.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

stim-1.15.0-cp310-cp310-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

stim-1.15.0-cp310-cp310-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

stim-1.15.0-cp39-cp39-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.9Windows x86-64

stim-1.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

stim-1.15.0-cp39-cp39-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

stim-1.15.0-cp39-cp39-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

stim-1.15.0-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8Windows x86-64

stim-1.15.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

stim-1.15.0-cp38-cp38-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

stim-1.15.0-cp38-cp38-macosx_10_9_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

stim-1.15.0-cp37-cp37m-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.7mWindows x86-64

stim-1.15.0-cp37-cp37m-win32.whl (2.4 MB view details)

Uploaded CPython 3.7mWindows x86

stim-1.15.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

stim-1.15.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (5.2 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ i686

stim-1.15.0-cp37-cp37m-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

stim-1.15.0-cp36-cp36m-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.6mWindows x86-64

stim-1.15.0-cp36-cp36m-win32.whl (2.4 MB view details)

Uploaded CPython 3.6mWindows x86

stim-1.15.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ x86-64

stim-1.15.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (5.2 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ i686

stim-1.15.0-cp36-cp36m-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.6mmacOS 10.9+ x86-64

File details

Details for the file stim-1.15.0.tar.gz.

File metadata

  • Download URL: stim-1.15.0.tar.gz
  • Upload date:
  • Size: 853.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for stim-1.15.0.tar.gz
Algorithm Hash digest
SHA256 95236006859d6754be99629d4fb44788e742e962ac8c59caad421ca088f7350e
MD5 8caa077d86cd1dd386724f2a3ee13b87
BLAKE2b-256 77150218eacd61cda992daf398bc36daf9830c8b430157a3ac0c06379598d24a

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.15.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fb9465ab120837ecbd26b5af216a00715f04da087ddcfa09646892c8de720d09
MD5 5914b203641db3205cc7eed89419e304
BLAKE2b-256 25971bf3bf16129667eff1c0d0f3bb95262a2bec8c8d1227aa973b8e2a1935b6

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.15.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 35e36d0479015b4dcb4261b8b68be85067cbd4bac5632bdfdb3ee3f8671d05a9
MD5 e3d3bd7d62a378232e3150ecba8079c2
BLAKE2b-256 bb9910604264cd7159573d6d01cdf5f9675c71580dcc3df5c533fccabad59cda

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.15.0-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 673a323402c266b1a1225565d69d31816c3d4a4c259383ed4fa9c15cacd12411
MD5 d901502966815f9bf23c4097b7216d23
BLAKE2b-256 287f825d745dc128321dd2f41da75d18111121a90e7bb711da24f28b1e003c9e

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: stim-1.15.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for stim-1.15.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 e92d5be90f6c92bada6b5aea64dfe9c80813a06e1316a71d5a36203dd24492f5
MD5 95f8b7b932d4b1100579f2cf8359b26f
BLAKE2b-256 817eabfed103a045a6ee8c7f3f00cd820d1cf9127304066aec42ea9fb89ee9c0

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.15.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fdd9e5ab85ba2fb113b8834422518f6e46a4aea2e0f6f7305cfc2ad0fcd07086
MD5 14db9c333386c5fd718619b4e002a297
BLAKE2b-256 5b25f3b56b07c0c3fb31cb973a5c47ef88da022a859940dd46c910b706fc74aa

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.15.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fc613f78bc88b4318d7f34f9fddacec52638c11b72cc618f911bdd7ca153f938
MD5 2b0e45357774539d1458fcd4e0a3c9f6
BLAKE2b-256 46f35aa6a7b31bcc9fb2540f65954b99dbf1e8c5fcd8d0aa164857b74e5eae9a

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.15.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 d426e00afe21478828369df3aaa82905e710c5b1f72582ec45244e3739d6183d
MD5 392274b2b8004e772c7faac977d09ebb
BLAKE2b-256 6599da44f1fde8692deb74e291899699ee166e5726b975addff50f0f68bfc4c1

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: stim-1.15.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for stim-1.15.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6e3b61a2d9dc4b4312f5cf2ccf9c9f7175fe13a12e5c08df99835c5275680919
MD5 9a6d57edb6976adfc8777f8441587ecf
BLAKE2b-256 cb275b8e8155e7fb75a9313e70f77a62233e0b9041c5acb60f6cf5a908d221e8

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.15.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f0fb249f1a2897a22cbe4e0c2627abf49188cbbf19b942d4749972d1c3bdf12c
MD5 2fee95ed7513469bae5315941e6e67af
BLAKE2b-256 d7c11dfa90b0622070eb39b4260eca26814d6fbac0f278e23b156072d9fac86b

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.15.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0bb3757c69c9b16fd24ff7400b5cddb22017c4cae84fc4b7b73f84373cb03c00
MD5 b425b36e97eca06d1a8a468da040f330
BLAKE2b-256 a8820a01580071c6d50107298e93faa88250fc30f1538117ec887ec48de7816d

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.15.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 48525d92965cc65b61399a9e1fe1d7a8925981bb4430ef69866d4e5c67a77d16
MD5 8b05ab10ad59bf8e9ed05f985200689e
BLAKE2b-256 945f82a80a3b0e494af4723737ea2109e64edbedc25fe05dcee8918e70d3a060

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: stim-1.15.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for stim-1.15.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d94638feaac9d037690779c383592bb898eda9db460d23fc0652d10030d570c9
MD5 ad2013dec7c06765c8bef76e091eb52b
BLAKE2b-256 c62c84b07f2fe78f382c3514ce3863554ae47019536293d366e80e57598fe9cb

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.15.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 31c55fad7529d6ee508f268534eeca1433017f2e83082f88275bea362b94f30f
MD5 ebdaca2ab34dd9ea0fcd44820be0afeb
BLAKE2b-256 d806b267359c50d735ca718dd487ec57842d0ed34865b62b0d8e6bdc3381d611

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.15.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6f240c196f23126bfed79bd78de5baa1fdde9c8fbfe56de032a12657fc42da37
MD5 8c0de4ed551762e5baa333fee417a98c
BLAKE2b-256 1685e82bd61413db51c92642620340c9175f0e1e93d2afc5274e8fa775831326

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.15.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4c10d2022b3c4c245f5f421dbf01b012a4d04901df697d9aca69eaea329c8532
MD5 36f384869973c5cea9535fb3a792673d
BLAKE2b-256 30e85d0c058e59ba156c6f1bfd8569a889dec80154e95d7903bf50bea31814ec

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: stim-1.15.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for stim-1.15.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d6d409d42899bf35cd949806231d382ee3e4f679dd0e960910b39207d2fbe62e
MD5 8066984aa9f6712e5346132474ff0aa3
BLAKE2b-256 5226901a92dedf818c1fb086a160887f39a85f4f3d9e4f683b0f06888c457381

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2f64ab075e856040c3b4157a4f2caa329204d579cbd7c0c02c7247e5a78da5db
MD5 cc31525c23567f24f1432100a70d2f2a
BLAKE2b-256 48c19a5a0db2e9735debdda7d498c0ae3407aca88b705beb8a8c1c90350d4316

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.15.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 190c5a3c9cecdfae3302d02057d1ed6d9ce7910d2bcc2ff375807d8f8ec5494d
MD5 f795e13c1411b1e7fe23bf34ca765703
BLAKE2b-256 bd6eb0fe30a5befe967632409ec068d49f4dcc186c7383d245cf8c9a343e3f2d

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.15.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a49af2ffc5f18178cddb1ef0014568a7114f97fe9a12f2b905ab8e2158d40558
MD5 868a07f02f0d688690f0c62700a603ce
BLAKE2b-256 ce94d44651fd1754b0282d65c2c39dc4c72833c7adc99e7dc873bb6400aa3787

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: stim-1.15.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for stim-1.15.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 810383267ed94091dd3f49c3bd45061dbdc4e0f7a766de6a8f0e62bee2edc494
MD5 dbac7faba91723a5cd06ff8e589c6944
BLAKE2b-256 9370f938e362e68bd9c9ac773c9494f0fc1cedf19743717b6e30dd2e89840b6f

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.15.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 41fa67434e9d841dbee785639b2766265753eec31cabaf7e6f47fbe3b06a1d9c
MD5 250dbd12552ca2b9de5b26c57cf54ccf
BLAKE2b-256 1cb2c58ccb71e9bd8b7c5f340212b79cef5b22dc6a941b91f60c85481bea1388

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for stim-1.15.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3aa9ab2c82e111207515976b0561fb5a44a9834bcb7769cfd6c8fc66005e82c6
MD5 d02401479db7f254e38dfbd1b4bb82b4
BLAKE2b-256 671fd770778ff75efa92e3ef91a8d373bc2a209d6717ce2eb3036bf2742f2287

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.15.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c095ba13da95223e6b55f5c3493d48a1c04926827b6d89ae4af426044633d710
MD5 48d2d619edf4ffb2050912b9d447567f
BLAKE2b-256 360811a7c85cb651c0a25927e8ac27736534848b8ff9ec2e223d363735215968

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: stim-1.15.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for stim-1.15.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 6940dbab42507281dddc8dd7992e7ec36a2a2c4b5eaa340bfc577143251d1dc5
MD5 db991bbccd30dbb6a3571c46440f4b5e
BLAKE2b-256 3aa1f8a7ccf960ce224cd0d9e2ba38b00b1fd104ec24e8599e89a56dc12ef609

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: stim-1.15.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for stim-1.15.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 6aadcdfb6f0f900bf7d66e815201ace8509926d1213019a2b87831d0eaef8362
MD5 83410714bffb717135e58959eba5a951
BLAKE2b-256 dc170ce685f4351f488204e6c8fabd433f9cc9ca9e2b8c26181b67a30f1c8fe6

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.15.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 614e042645a7a6af65942f610538b166205635e5eedeac2f41ecb589cd7bd40c
MD5 8c9581e62279c1c1a9208867299c160d
BLAKE2b-256 92fcba9326e297a93d89e141c9e7a7fd231286c311d117c034ac8a0fc5ba0e59

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for stim-1.15.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1f8ed62c8b257c1d6ae63f0611f49771b2aaa8986a276f94c2c607467bd5587e
MD5 cca574026aa0a7c549c7fc955b2d3191
BLAKE2b-256 d60796143781e6b08b19f6225e25531d7bf15117bc2d5345d87087acc6a82169

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.15.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c5504454a7158c009e9270a9fce90f6e4b6007a5f62e0c30c5d750ce845db407
MD5 3715fb74d4c96205dcb14a46ba4d636e
BLAKE2b-256 69f567e02828f46881a893e8667f7175f1243dc155ff1f50f69c3f1b248130db

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: stim-1.15.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for stim-1.15.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a1e8ee222b112f9df1b8fdc4a9d500957a5a6ccd789b34e955a05862aa211f9d
MD5 d297095ffa80c7f237f16398bcd86ebe
BLAKE2b-256 55a12a13b661e5181f9d5adc8672af332d75b50d9e4a5b7b70db35cabf520510

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: stim-1.15.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for stim-1.15.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 f6f7cd19a2a3bb3e494bb14e23a23c8c51afccf9f630d422c4242d2ed4917c2f
MD5 0209cebf0d34466e6af4f41f8d7a80e7
BLAKE2b-256 69a481a151529f5de20fbd396ad409dafbb553efbfa36624263ddffc4250d4ef

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.15.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bc55de6dca511a77dc5fc4ece750ae9afe8ab840455da60a119a61eb1269e338
MD5 327baf7ef9b9f0e785757ece803abf49
BLAKE2b-256 43632f4438cb15342c625f4b1b831ce7985d96f8e000e440c428bb3d4e1ae18e

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for stim-1.15.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 32a1b3d25c5154d17ee1e2f6c0051cbf8a1ea3babc12571231b8aa7191a5c82c
MD5 ba1d5a8845055dbd72cddac78c6564d4
BLAKE2b-256 8dcd4a90a34710285df02d790ea07b89912018c57e43be0746f7c78068963394

See more details on using hashes here.

File details

Details for the file stim-1.15.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for stim-1.15.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 93fab5d7a113f9c0e8dd78a77ef083c654f3638fc9d160067fcdac1bb52af9ac
MD5 004377a088d17a561771a1e0a4eb1267
BLAKE2b-256 711cb808860993997504c14f200045a7fdfcc94cc4632323a703534b90abd643

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page