Skip to main content

Socket.IO server to schedule Celery tasks from clients in real-time.

Project description

PyPI version Docker Image Version (latest semver)

Stirfried 🥡

Socket.IO server to control Celery tasks from the client (browser) in real-time.

Running the example

You can run the example included in the repo as follows:

  • Clone the repository
  • cd into the example directory
  • Run docker-compose build
  • Then docker-compose up
  • Open your browser and go to http://localhost:8080/
  • You should see the following interface:

Stirfried 🥡 test client

Getting started

Stirfried has a three layered architecture:

  1. Socket.IO clients
  2. Socket.IO server
  3. Celery workers

The design allows you to independently scale the number of servers when server-client communication workload increases and the number of workers when the task processing workload increases.

By leveraging Celery's task routing (explained below) you can also divide workers into groups and scale groups independently.

Socket.IO clients

Clients can connect using standard Socket.IO libraries.

The server is listening for clients to emit any of the following events:

Event Description
send_task({task_name, args, kwargs}) -> {status, data} Emit to schedule a task. Server immediately replies with status and task_id in case of success or a message in case of failure. Use a callback to receive it in the client.
revoke_task(task_id) Emit to cancel a task.

Clients can subscribe to the following events emitted by the server:

Event Description
on_progress({current, total, info, task_id, task_name}) Emitted on task progress updates.
on_retry({task_id, task_name[, einfo]}) Emitted on task retries. einfo is only available if stirfried_error_info=True.
on_failure({task_id, task_name[, einfo]}) Emitted on task failure. einfo is only available if stirfried_error_info=True.
on_success({retval, task_id, task_name}) Emitted on task success.
on_return({status, retval, task_id, task_name}) Emitted on task success and failure.

Socket.IO server

For the Socket.IO server component you can pull the prebuilt docker image:

docker pull korijn/stirfried

or you can copy the project and customize it to your liking.

Configuration

You are required to provide a settings.py file with the configuration for the server. Stirfried uses on the standard Celery configuration mechanism.

Available settings for stirfried:

  • stirfried_redis_url - Required. Redis connection string for the Socket.IO server.
  • stirfried_error_info - Optional. Set to True to include tracebacks in events when tasks fail.
  • stirfried_available_tasks - Optional. List of task names. If given, send_task will fail if a task name is not contained in the list.

Configuration: python-socketio

You can configure python-socketio by prefixing configuration keys with socketio_. They will be passed on without the prefix to the AsyncServer constructor.

Task routing

The server sends tasks to the Celery broker by name, so it can act as a gateway to many different Celery workers with different tasks. You can leverage Celery's task routing configuration for this purpose.

Example

Let's say you have two workers, one listening on the feeds queue and another on the web queue. This is how you would configure the server accordingly with settings.py:

# Stirfried settings
stirfried_redis_url = "redis://localhost:6379/0"

# Celery settings
broker_url = "redis://localhost:6379/1"
task_routes = {
    "feed.tasks.*": {"queue": "feeds"},
    "web.tasks.*": {"queue": "web"},
}

You can then run the server as follows:

docker run --rm -ti -v `pwd`/settings.py:/app/settings.py:ro -p 8000:8000 korijn/stirfried

Celery workers

You need to install Stirfried in your Celery workers via pip:

pip install stirfried

In your Celery workers, import the StirfriedTask:

from stirfried.celery import StirfriedTask

Configure StirfriedTask as the base class globally:

app = Celery(..., task_cls=StirfriedTask)

...or per task:

@app.task(base=StirfriedTask)
def add(x, y, room=None):
    return x + y

Rooms

The server injects the client's sid into the keyword argument room.

The StirfriedTask base class depends on the presence of this keyword argument.

This means you are required to add the keyword argument room=None to your task definitions in order to receive it.

Progress

You can emit progress from tasks by calling self.emit_progress(current, total, info=None).

Use the info=None keyword argument to send along arbitrary metadata, such as a progress message or early results.

Note that you are required to pass bind=True to the celery.task decorator in order to get access to the self instance variable.

@celery.task(bind=True)
def add(self, x, y, room=None):
    s = x
    self.emit_progress(50, 100)  # 50%
    s += y
    self.emit_progress(100, 100)  # 100%
    return s

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for stirfried, version 0.5.0
Filename, size File type Python version Upload date Hashes
Filename, size stirfried-0.5.0-py3-none-any.whl (5.3 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size stirfried-0.5.0.tar.gz (5.5 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page