Pytorch implementation of Shift-tolerant LPIPS
Project description
ShiftTolerant-LPIPS
Shift-tolerant Perceptual Similarity Metric
Abhijay Ghildyal, Feng Liu. In ECCV, 2022. [Arxiv]
from stlpips_pytorch import stlpips
from stlpips_pytorch import utils
path0 = "<dir>/ShiftTolerant-LPIPS/imgs/ex_p0.png"
path1 = "<dir>/ShiftTolerant-LPIPS/imgs/ex_ref.png"
img0 = utils.im2tensor(utils.load_image(path0))
img1 = utils.im2tensor(utils.load_image(path1))
stlpips_metric = stlpips.LPIPS(net="alex", variant="shift_tolerant")
stlpips_metric(img0,img1)
# 0.7777554988861084
Citation
If you find this repository useful for your research, please use the following.
@inproceedings{ghildyal2022stlpips,
title={Shift-tolerant Perceptual Similarity Metric},
author={Ghildyal, Abhijay and Liu, Feng},
booktitle={European Conference on Computer Vision},
year={2022}
}
Acknowledgements
This repository borrows from LPIPS, Anti-aliasedCNNs, and CNNsWithoutBorders. We thank the authors of these repositories for their incredible work and inspiration.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
stlpips_pytorch-0.0.2.tar.gz
(63.8 MB
view details)
Built Distribution
File details
Details for the file stlpips_pytorch-0.0.2.tar.gz
.
File metadata
- Download URL: stlpips_pytorch-0.0.2.tar.gz
- Upload date:
- Size: 63.8 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.7.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 29b1d4615e18851571d3872c509e9df3f415a5ba406fd6ac757356c7767fa8a6 |
|
MD5 | 041e1d1d2cda47a65e9fb8b2446180a9 |
|
BLAKE2b-256 | 70654e34c0fe7661690a33c0a13252e592cb8c9939d097550a9ee879472dee3d |
File details
Details for the file stlpips_pytorch-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: stlpips_pytorch-0.0.2-py3-none-any.whl
- Upload date:
- Size: 63.8 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.7.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a412bf901a97c942b37af57c7c63b6e5d1aebfe8d1dfc17853d4b2f878630645 |
|
MD5 | 23a1f670f144535f9837e3219acfc571 |
|
BLAKE2b-256 | f8af98a4417833e6805254491f86f4ee55f8629fd2412d832b0049b33b27a9b7 |