Skip to main content

No project description provided

Project description

Arrow

“... even if the previous millisecond is closer to us than the birth of the universe, it is equally out of reach.” ― Jean-Christophe Valtat, Luminous Chaos

Concept

This library implements a generalized version of the Gillespie Algorithm, a stochastic approach to numerically solving discrete systems. Each iteration, the algorithm will calculate the propensities for each reaction given a rate and the counts of the reactants present in the current state of the system, then selects one reaction to occur and the interval of time between the previous reaction and the current reaction. Iterating this produces a trajectory (or history) of the state vector over the course of the simulation.

Installation

Add the following to your requirements.txt, or pip install stochastic-arrow:

stochastic-arrow==0.0.1

Usage

The arrow library presents a single class as an interface, StochasticSystem, which operates on a set of reactions (encoded as a numpy matrix of stoichiometrix coefficients) and associated reaction rates:

from arrow import StochasticSystem
import numpy as np

# Each column is a reaction and each row is a molecular species (or other
# entity). The first reaction here means that the first and second elements
# combine to create the third, while the fourth is unaffected.
stoichiometric_matrix = np.array([
    [-1, -2, +1],
    [-1,  0, +1],
    [+1,  0, -1],
    [ 0, +1,  0]
    ])

# Each reaction has an associated rate for how probable that reaction is.
rates = np.array([3.0, 1.0, 1.0])

# Once we have a matrix of reactions and their associated rates, we can
# construct the system.
system = StochasticSystem(stoichiometric_matrix, rates)

Now that the system has been instantiated, we can invoke it with any initial state vector and then run it for a given time interval:

# This gives the initial state of the system (counts of each molecular species,
# for instance).
state = np.array([1000, 1000, 0, 0])

# We also specify how long we want the simulation to run. Here we set it to one
# second.
duration = 1

# Once we have an initial state and duration, we can run the simulation for the
# given duration. `evolve` returns the history of the state vector (counts) for
# each time step, and the history of time steps as they will be in uneven
# increments throughout the simulation.
time, counts = system.evolve(state, duration)

Testing

arrow uses pytest: https://docs.pytest.org/en/latest/ so you can test simply by invoking:

> pytest

Also, we have a test that generates plots of various systems which can be run like so:

> python arrow/test/test_arrow.py

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stochastic-arrow-0.0.7.tar.gz (3.4 kB view details)

Uploaded Source

Built Distribution

stochastic_arrow-0.0.7-py2-none-any.whl (4.5 kB view details)

Uploaded Python 2

File details

Details for the file stochastic-arrow-0.0.7.tar.gz.

File metadata

  • Download URL: stochastic-arrow-0.0.7.tar.gz
  • Upload date:
  • Size: 3.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/2.7.15

File hashes

Hashes for stochastic-arrow-0.0.7.tar.gz
Algorithm Hash digest
SHA256 7101eccaf6202b22a272c1a7f4dc43e519bf2b4fbffad3a861c7909c978aa457
MD5 ee7df0152581db9d52e1c6305df9866f
BLAKE2b-256 49faed559a8b31d9de3f7a731f1cea614ca8ae98ee0f11027258b39966743a63

See more details on using hashes here.

File details

Details for the file stochastic_arrow-0.0.7-py2-none-any.whl.

File metadata

  • Download URL: stochastic_arrow-0.0.7-py2-none-any.whl
  • Upload date:
  • Size: 4.5 kB
  • Tags: Python 2
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/2.7.15

File hashes

Hashes for stochastic_arrow-0.0.7-py2-none-any.whl
Algorithm Hash digest
SHA256 06c4f257956122672675643fc0a1e17d07273233368d82508e79d87f9ce83665
MD5 764187696aac29532b44f42ec57ad8fe
BLAKE2b-256 2186bf1337b3e73c4b3bd8f7246e4fdc5f807995294860bade38d2687dbacb5e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page