Implementation of stochastic volatility models for option pricing
Project description
StochVolModels
Implementation of pricing analytics and Monte Carlo simulations for modeling of options and implied volatilities.
The StochVol package provides:
- Analytics for Black-Scholes and Normal vols
- Interfaces and implementation for stochastic volatility models, including log-normal SV model and Heston SV model using analytical method with Fourier transform and Monte Carlo simulations
- Visualization of model implied volatilities
For the analytic implementation of stochastic volatility models, the package provides interfaces for a generic volatility model with the following features.
- Interface for analytical pricing of vanilla options using Fourier transform with closed-form solution for moment generating function
- Interface for Monte-Carlo simulations of model dynamics
Illustrations of using package analytics for research
work is provided in top-level package my_papers
which contains computations and visualisations for several papers
Installation
Install using
pip install stochvolmodels
Upgrade using
pip install --upgrade stochvolmodels
Close using
git clone https://github.com/ArturSepp/StochVolModels.git
Table of contents
- Model Interface
- Running log-normal SV pricer
- Running Heston SV pricer
- Supporting Illustrations for Public Papers
Running model calibration to sample Bitcoin options data
Implemented Stochastic Volatility models
The package provides interfaces for a generic volatility model with the following features.
- Interface for analytical pricing of vanilla options using Fourier transform with closed-form solution for moment generating function
- Interface for Monte-Carlo simulations of model dynamics
- Interface for visualization of model implied volatilities
The model interface is in stochvolmodels/pricers/model_pricer.py
Log-normal stochastic volatility model
The analytics for the log-normal stochastic volatility model is based on the paper
Log-normal Stochastic Volatility Model with Quadratic Drift by Artur Sepp and Parviz Rakhmonov
The dynamics of the log-normal stochastic volatility model:
$$dS_{t}=r(t)S_{t}dt+\sigma_{t}S_{t}dW^{(0)}_{t}$$
$$d\sigma_{t}=\left(\kappa_{1} + \kappa_{2}\sigma_{t} \right)(\theta - \sigma_{t})dt+ \beta \sigma_{t}dW^{(0)}{t} + \varepsilon \sigma{t} dW^{(1)}_{t}$$
$$dI_{t}=\sigma^{2}_{t}dt$$
where $r(t)$ is the deterministic risk-free rate; $W^{(0)}_{t}$ and $W^{(1)}_t$ are uncorrelated Brownian motions, $\beta\in\mathbb{R}$ is the volatility beta which measures the sensitivity of the volatility to changes in the spot price, and $\varepsilon>0$ is the volatility of residual volatility. We denote by $\vartheta^{2}$, $\vartheta^{2}=\beta^{2}+\varepsilon^{2}$, the total instantaneous variance of the volatility process.
Implementation of Lognormal SV model is contained in
stochvolmodels/pricers/logsv_pricer.py
Heston stochastic volatility model
The dynamics of Heston stochastic volatility model:
$$dS_{t}=r(t)S_{t}dt+\sqrt{V_{t}}S_{t}dW^{(S)}_{t}$$
$$dV_{t}=\kappa (\theta - V_{t})dt+ \vartheta \sqrt{V_{t}}dW^{(V)}_{t}$$
where $W^{(S)}$ and $W^{(V)}$ are correlated Brownian motions with correlation parameter $\rho$
Implementation of Heston SV model is contained in
stochvolmodels/pricers/heston_pricer.py
Running log-normal SV pricer
Basic features are implemented in
examples/run_lognormal_sv_pricer.py
Imports:
import stochvolmodels as sv
from stochvolmodels import LogSVPricer, LogSvParams, OptionChain
Computing model prices and vols
# instance of pricer
logsv_pricer = LogSVPricer()
# define model params
params = LogSvParams(sigma0=1.0, theta=1.0, kappa1=5.0, kappa2=5.0, beta=0.2, volvol=2.0)
# 1. compute ne price
model_price, vol = logsv_pricer.price_vanilla(params=params,
ttm=0.25,
forward=1.0,
strike=1.0,
optiontype='C')
print(f"price={model_price:0.4f}, implied vol={vol: 0.2%}")
# 2. prices for slices
model_prices, vols = logsv_pricer.price_slice(params=params,
ttm=0.25,
forward=1.0,
strikes=np.array([0.9, 1.0, 1.1]),
optiontypes=np.array(['P', 'C', 'C']))
print([f"{p:0.4f}, implied vol={v: 0.2%}" for p, v in zip(model_prices, vols)])
# 3. prices for option chain with uniform strikes
option_chain = OptionChain.get_uniform_chain(ttms=np.array([0.083, 0.25]),
ids=np.array(['1m', '3m']),
strikes=np.linspace(0.9, 1.1, 3))
model_prices, vols = logsv_pricer.compute_chain_prices_with_vols(option_chain=option_chain, params=params)
print(model_prices)
print(vols)
Running model calibration to sample Bitcoin options data
btc_option_chain = chains.get_btc_test_chain_data()
params0 = LogSvParams(sigma0=0.8, theta=1.0, kappa1=5.0, kappa2=None, beta=0.15, volvol=2.0)
btc_calibrated_params = logsv_pricer.calibrate_model_params_to_chain(option_chain=btc_option_chain,
params0=params0,
constraints_type=ConstraintsType.INVERSE_MARTINGALE)
print(btc_calibrated_params)
logsv_pricer.plot_model_ivols_vs_bid_ask(option_chain=btc_option_chain,
params=btc_calibrated_params)
Comparison of model prices vs MC
btc_option_chain = chains.get_btc_test_chain_data()
uniform_chain_data = OptionChain.to_uniform_strikes(obj=btc_option_chain, num_strikes=31)
btc_calibrated_params = LogSvParams(sigma0=0.8327, theta=1.0139, kappa1=4.8609, kappa2=4.7940, beta=0.1988, volvol=2.3694)
logsv_pricer.plot_comp_mma_inverse_options_with_mc(option_chain=uniform_chain_data,
params=btc_calibrated_params,
nb_path=400000)
Analysis and figures for the paper
All figures shown in the paper can be reproduced using py scripts in
examples/plots_for_paper
Running Heston SV pricer
Examples are implemented here
examples/run_heston_sv_pricer.py
examples/run_heston.py
Content of run_heston.py
import numpy as np
import matplotlib.pyplot as plt
from stochvolmodels import HestonPricer, HestonParams, OptionChain
# define parameters for bootstrap
params_dict = {'rho=0.0': HestonParams(v0=0.2**2, theta=0.2**2, kappa=4.0, volvol=0.75, rho=0.0),
'rho=-0.4': HestonParams(v0=0.2**2, theta=0.2**2, kappa=4.0, volvol=0.75, rho=-0.4),
'rho=-0.8': HestonParams(v0=0.2**2, theta=0.2**2, kappa=4.0, volvol=0.75, rho=-0.8)}
# get uniform slice
option_chain = OptionChain.get_uniform_chain(ttms=np.array([0.25]), ids=np.array(['3m']), strikes=np.linspace(0.8, 1.15, 20))
option_slice = option_chain.get_slice(id='3m')
# run pricer
pricer = HestonPricer()
pricer.plot_model_slices_in_params(option_slice=option_slice, params_dict=params_dict)
plt.show()
Supporting Illustrations for Public Papers
As illustrations of different analytics, this packadge includes module my_papers
with codes for computations and visualisations featured in several papers
for
- "Log-normal Stochastic Volatility Model with Quadratic Drift" by Artur Sepp and Parviz Rakhmonov: https://www.worldscientific.com/doi/10.1142/S0219024924500031
stochvolmodels/my_papers/logsv_model_wtih_quadratic_drift
- "What is a robust stochastic volatility model" by Artur Sepp and Parviz Rakhmonov, SSRN: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4647027
stochvolmodels/my_papers/volatility_models
- "Valuation and Hedging of Cryptocurrency Inverse Options" by Artur Sepp and Vladimir Lucic, SSRN: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4606748
stochvolmodels/my_papers/inverse_options
- "Unified Approach for Hedging Impermanent Loss of Liquidity Provision" by Artur Sepp, Alexander Lipton and Vladimir Lucic, SSRN: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4887298
stochvolmodels/my_papers/il_hedging
- "Stochastic Volatility for Factor Heath-Jarrow-Morton Framework" by Artur Sepp and Parviz Rakhmonov, SSRN: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4646925
stochvolmodels/my_papers/sv_for_factor_hjm
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file stochvolmodels-1.0.23.tar.gz
.
File metadata
- Download URL: stochvolmodels-1.0.23.tar.gz
- Upload date:
- Size: 119.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 042e716d7c528c0fa99040672bebf51f2924594c58c266200ec24da319189457 |
|
MD5 | 18e859985d60572cf47b63e52f00a9e6 |
|
BLAKE2b-256 | 8d6127e5e901a254052513488e087fadf6ed4cda51c77440148990bcaac77003 |