A Python library for loading stock data from the Seeking Alpha API
Project description
Stock Data Loader
A Python library for loading stock data from the Seeking Alpha API.
Installation
You can install the Stock Data Loader using pip:
pip install stock-data-loader
How to Use StockDataLoader
The StockDataLoader
class provides an easy way to fetch and process stock data from the Seeking Alpha API. Here's a quick guide on how to use it:
-
Import the class:
from stock_data_loader import StockDataLoader
-
Create an instance of the loader:
loader = StockDataLoader()
-
Prepare a list of stock symbols you want to fetch data for:
symbols = ['AAPL', 'GOOGL', 'MSFT', 'AMZN']
-
Use the
load_symbol_data
method to fetch and process the data:result_df = loader.load_symbol_data(symbols)
-
The result is a pandas DataFrame. You can now work with this data:
print(result_df)
Example:
from stock_data_loader import StockDataLoader
loader = StockDataLoader()
symbols = ['AAPL', 'GOOGL', 'MSFT', 'AMZN']
result_df = loader.load_symbol_data(symbols)
# Print the first few rows of the result
print(result_df.head())
# Save the result to a CSV file
result_df.to_csv('stock_data.csv', index=False)
This will fetch data for the specified symbols, process it, and return a DataFrame with various attributes like symbol, name, follower count, exchange, and content counters for analysis, news, transcripts, etc.
Output Columns
The load_symbol_data
method returns a pandas DataFrame with the following columns:
id
: Unique identifier for the stocktype
: Type of the data (usually "ticker")symbol
: Stock symbolname
: Full name of the companyfollowersCount
: Number of followers on Seeking Alphaexchange
: Stock exchange where the stock is listedanalysis
: Number of analysis articlesrelated_analysis
: Number of related analysis articlestranscripts
: Number of earnings call transcriptsearning_slides
: Number of earning slides availablenews
: Number of news articlespartnerNews
: Number of partner news articlespressReleases
: Number of press releasesbulls_say
: Number of bullish opinionsbears_say
: Number of bearish opinionsinvesting_groups
: Number of investing groups discussing the stockannual_dividends
: Number of annual dividend reportsannual_earnings_estimates
: Number of annual earnings estimatesdividend_news
: Number of dividend-related news itemssec_filings
: Number of SEC filingssec_filings_fin_and_news
: Number of financial and news-related SEC filingssec_filings_tenders
: Number of tender offer SEC filingssec_filings_other
: Number of other SEC filingssec_filings_ownership
: Number of ownership-related SEC filingssector_rating_change_notices
: Number of sector rating change noticessector_quant_warnings
: Number of quantitative warnings for the sectorsector_dividend_safety_warnings
: Number of dividend safety warnings for the sectorquarterly_revenue
: Number of quarterly revenue reportsannual_revenue
: Number of annual revenue reportsmarket_open
: Market open statusmarket_open_time
: Market open timeanalysis_count
: Another count of analysis articles (may differ fromanalysis
)news_count
: Another count of news articles (may differ fromnews
)transcripts_count
: Another count of transcripts (may differ fromtranscripts
)
Note: Some columns may be empty or have different values than expected due to variations in the API response.
Example Output
Here's a sample of what the output might look like:
print(result_df[['symbol', 'followersCount', 'analysis', 'news', 'sec_filings', 'annual_dividends']].head())
symbol followersCount analysis news sec_filings annual_dividends
0 AAPL 2713202 10037 10753 121 0
1 TSLA 1151910 5929 5737 121 0
2 GOOGL 459787 1974 4592 97 0
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
License
This project is licensed under the MIT License - see the LICENSE file for details.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file stock_data_loader-0.1.4.tar.gz
.
File metadata
- Download URL: stock_data_loader-0.1.4.tar.gz
- Upload date:
- Size: 4.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ea4cdc3b48ec6850faf85745ca66bd4d76ec67faddb12919a74e32cfeea24031 |
|
MD5 | 104f5ac1f7d008f654453780a8cd3361 |
|
BLAKE2b-256 | 0d574c09487f1676cd3afe27056a7ad2361d3797508637fd5e4138654081d2c4 |
File details
Details for the file stock_data_loader-0.1.4-py3-none-any.whl
.
File metadata
- Download URL: stock_data_loader-0.1.4-py3-none-any.whl
- Upload date:
- Size: 4.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 953ae854a4d8810f4be29d12f17ec7888cc0e541469740667be46c03f8732e58 |
|
MD5 | 96cd3c2dcf203d81ec5d4f4df5748def |
|
BLAKE2b-256 | 3040a8e5890a676471f992d9cf6e080c5f0c21707bb6de05d0b0df63178770a3 |