Skip to main content

A Python package for inventory optimization and simulation

Project description

Stockpyl

PyPI Documentation Status Coverage GitHub GitHub issues Twitter Follow

Stockpyl is a Python package for inventory optimization. It implements classical single-node inventory models like the economic order quantity (EOQ), newsvendor, and Wagner-Whitin problems. It also contains algorithms for multi-echelon inventory optimization (MEIO) under both stochastic-service model (SSM) and guaranteed-service model (GSM) assumptions.

Most of the models and algorithms implemented in Stockpyl are discussed in the textbook Fundamentals of Supply Chain Theory (FoSCT) by Snyder and Shen, Wiley, 2019, 2nd ed. Most of them are much older; see FoSCT for references to original sources.

For a tutorial, see Snyder, L. V., "Stockpyl: A Python Package for Inventory Optimization and Simulation," in: Bish, E. K. and H. Balasubramanian, INFORMS TutORials in Operations Research, 156–197, 2023. The associated Jupyter notebooks are at notebooks/.

For lots of details, read the docs.

Some Examples

Solve the newsvendor problem with a holding (overage) cost of 2, a stockout (underage) cost of 18, and demands that are normally distributed with a mean of 120 and a standard deviation of 10:

>>> from stockpyl.newsvendor import newsvendor_normal
>>> S, cost = newsvendor_normal(holding_cost=2, stockout_cost=18, demand_mean=120, demand_sd=10)
>>> S
132.815515655446
>>> cost
35.09966638649737

Use Chen and Zheng's (1994) algorithm (based on Clark and Scarf (1960)) to optimize a 3-node serial system under the stochastic-service model (SSM):

>>> from stockpyl.ssm_serial import optimize_base_stock_levels
>>> S_star, C_star = optimize_base_stock_levels(
...     num_nodes=3,
...     echelon_holding_cost=[4, 3, 1],
...     lead_time=[1, 1, 2],
...     stockout_cost=40,
...     demand_mean=10,
...     demand_standard_deviation=2
... )
>>> S_star
{1: 12.764978727246302, 2: 23.49686681508743, 3: 46.28013742779933}
>>> C_star
86.02533221942987

Simulate the same system using the optimal base-stock levels:

Optimize committed service times (CSTs) for a tree network under the guaranteed-service model (GSM) using Graves and Willems' (2000) dynamic programming algorithm:

>>> from stockpyl.gsm_tree import optimize_committed_service_times
>>> from stockpyl.instances import load_instance
>>> # Load a named instance, Example 6.5 from FoSCT.
>>> tree = load_instance("example_6_5")
>>> opt_cst, opt_cost = optimize_committed_service_times(tree)
>>> opt_cst
{1: 0, 3: 0, 2: 0, 4: 1}
>>> opt_cost
8.277916867529369

Resources

Feedback

If you have feedback or encounter problems, please report them on the Stockpyl GitHub Issues Page. (If you are not comfortable using GitHub for this purpose, feel free to e-mail me. My contact info is on my webpage.)

License

Stockpyl is open-source and released under the MIT License.

Citation

If you'd like to cite the Stockpyl package, you can use the following BibTeX entry:

@misc{stockpyl,
    title={Stockpyl},
    author={Snyder, Lawrence V.},
    year={2023},
    url={https://github.com/LarrySnyder/stockpyl}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stockpyl-1.0.2.tar.gz (251.5 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

stockpyl-1.0.2-py3-none-any.whl (176.7 kB view details)

Uploaded Python 3

File details

Details for the file stockpyl-1.0.2.tar.gz.

File metadata

  • Download URL: stockpyl-1.0.2.tar.gz
  • Upload date:
  • Size: 251.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.13

File hashes

Hashes for stockpyl-1.0.2.tar.gz
Algorithm Hash digest
SHA256 1bcffd584c6cab1bb7a878f4fd7fe4c069b3672fd5c924d964ffd2fa8ab08519
MD5 1cc1e5d77a427336baf01d48198a90d6
BLAKE2b-256 1931884166f4d70368ba243df26d82d8349a41095e973a2305550d109fa85f5f

See more details on using hashes here.

File details

Details for the file stockpyl-1.0.2-py3-none-any.whl.

File metadata

  • Download URL: stockpyl-1.0.2-py3-none-any.whl
  • Upload date:
  • Size: 176.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.13

File hashes

Hashes for stockpyl-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 21010f20cd30ba317721fefcee3d016f69ddaf013509316427bc4cdc8b15c801
MD5 b26cd5cd321f9e6e990bd02627817b95
BLAKE2b-256 ec617c5fba4743fc4fd95360e4ab8b3232e13815b68c24210183a38ea447f749

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page