Skip to main content

A Python package for inventory optimization and simulation

Project description

Stockpyl

PyPI Documentation Status Coverage GitHub GitHub issues Twitter Follow

Stockpyl is a Python package for inventory optimization. It implements classical single-node inventory models like the economic order quantity (EOQ), newsvendor, and Wagner-Whitin problems. It also contains algorithms for multi-echelon inventory optimization (MEIO) under both stochastic-service model (SSM) and guaranteed-service model (GSM) assumptions.

Most of the models and algorithms implemented in Stockpyl are discussed in the textbook Fundamentals of Supply Chain Theory (FoSCT) by Snyder and Shen, Wiley, 2019, 2nd ed. Most of them are much older; see FoSCT for references to original sources.

For a tutorial, see Snyder, L. V., "Stockpyl: A Python Package for Inventory Optimization and Simulation," in: Bish, E. K. and H. Balasubramanian, INFORMS TutORials in Operations Research, 156–197, 2023. The associated Jupyter notebooks are at notebooks/.

For lots of details, read the docs.

Some Examples

Solve the newsvendor problem with a holding (overage) cost of 2, a stockout (underage) cost of 18, and demands that are normally distributed with a mean of 120 and a standard deviation of 10:

>>> from stockpyl.newsvendor import newsvendor_normal
>>> S, cost = newsvendor_normal(holding_cost=2, stockout_cost=18, demand_mean=120, demand_sd=10)
>>> S
132.815515655446
>>> cost
35.09966638649737

Use Chen and Zheng's (1994) algorithm (based on Clark and Scarf (1960)) to optimize a 3-node serial system under the stochastic-service model (SSM):

>>> from stockpyl.ssm_serial import optimize_base_stock_levels
>>> S_star, C_star = optimize_base_stock_levels(
...     num_nodes=3,
...     echelon_holding_cost=[4, 3, 1],
...     lead_time=[1, 1, 2],
...     stockout_cost=40,
...     demand_mean=10,
...     demand_standard_deviation=2
... )
>>> S_star
{1: 12.764978727246302, 2: 23.49686681508743, 3: 46.28013742779933}
>>> C_star
86.02533221942987

Simulate the same system using the optimal base-stock levels:

Optimize committed service times (CSTs) for a tree network under the guaranteed-service model (GSM) using Graves and Willems' (2000) dynamic programming algorithm:

>>> from stockpyl.gsm_tree import optimize_committed_service_times
>>> from stockpyl.instances import load_instance
>>> # Load a named instance, Example 6.5 from FoSCT.
>>> tree = load_instance("example_6_5")
>>> opt_cst, opt_cost = optimize_committed_service_times(tree)
>>> opt_cst
{1: 0, 3: 0, 2: 0, 4: 1}
>>> opt_cost
8.277916867529369

Resources

Feedback

If you have feedback or encounter problems, please report them on the Stockpyl GitHub Issues Page. (If you are not comfortable using GitHub for this purpose, feel free to e-mail me. My contact info is on my webpage.)

License

Stockpyl is open-source and released under the GPLv3 License.

Citation

If you'd like to cite the Stockpyl package, you can use the following BibTeX entry:

@misc{stockpyl,
    title={Stockpyl},
    author={Snyder, Lawrence V.},
    year={2023},
    url={https://github.com/LarrySnyder/stockpyl}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stockpyl-1.0.1.tar.gz (261.4 kB view details)

Uploaded Source

Built Distribution

stockpyl-1.0.1-py3-none-any.whl (188.5 kB view details)

Uploaded Python 3

File details

Details for the file stockpyl-1.0.1.tar.gz.

File metadata

  • Download URL: stockpyl-1.0.1.tar.gz
  • Upload date:
  • Size: 261.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.13

File hashes

Hashes for stockpyl-1.0.1.tar.gz
Algorithm Hash digest
SHA256 74f35d328a5deb55abd756ba0e97ac11e117809037bc7a87c5dd1aa3e9aba8e0
MD5 cd8290878f1a6a8b6452bd3f86e417c7
BLAKE2b-256 3de6c257964cd944f411781e59b147d2189e3b6eeba7a6bd8a15fda52bada87b

See more details on using hashes here.

File details

Details for the file stockpyl-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: stockpyl-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 188.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.13

File hashes

Hashes for stockpyl-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 293b95f0a5c992d1a7f0007e7f2948042a3a409d9b5b935a86065dca7f58461c
MD5 3b56f275529aebb856f7abfcb3d03512
BLAKE2b-256 44c55dd264599cdacd60d44c631000ecded91f42d45e8ca42cd39b76c328562a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page