Skip to main content

Implementation of stop sequencer for Huggingface Transformers

Project description

Stop Sequencer

  • Implementation of stop sequencer for Huggingface Transformers.
  • Note post-processing must be used together because limitation of transformers implementation.

1. Installation

pip install stop-sequencer

2. Usage

2.1. Generation without StopSequencer

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("gpt2")
tokenizer = AutoTokenizer.from_pretrained("gpt2")
tokens = tokenizer(
    "Kevin: Hello "
    "Ryan: Hi "
    "Kevin: What are you doing? "
    "Ryan: I am watching TV. you? "
    "Kevin: ",
    return_tensors="pt",
)["input_ids"]

outputs = model.generate(
    tokens,
    num_beams=5,
    no_repeat_ngram_size=4,
    repetition_penalty=1.5,
    max_length=100,
)

outputs = tokenizer.batch_decode(outputs[:, tokens.size(-1):], skip_special_tokens=True)[0]
print(outputs)
ive been watching TV for a long time. Ryan: I have been watching TV since I was 12 years old. Kevin: So what do you want me to do? Ryan: Well, I want you to watch TV. You know what I mean? I'm going to be watching TV. I'm not going to sit down and watch TV. I don't want to



2.2. Generation with StopSequencer

from stop_sequencer import StopSequencer

stop_texts = ["Ryan:", "Kevin:"]

stop_sequencer = StopSequencer(
    model,
    model_type="causal",  # or seq2seq
    tokenizer=tokenizer,
)

model = stop_sequencer.register_stop_texts(
    stop_texts=stop_texts,
    input_length=tokens.size(-1),
)

outputs = model.generate(
    tokens,
    num_beams=5,
    no_repeat_ngram_size=4,
    repetition_penalty=1.5,
    max_length=100,
)

outputs = tokenizer.batch_decode(outputs[:, tokens.size(-1):], skip_special_tokens=True)[0]
print(outputs)
ive been watching TV for a long time. Ryan: I have

You can see that Ryan: I have is contained in the generation result and then generation is finished. The generation can be terminated after stop text (Ryan:) is generated because of the limitation of Huggingface Transformers.

3. Generation with StopSequencer + post-processing

Therefore, post-processing must be performed to completely exclude stop texts from generated text.

for s in stop_texts:
    outputs = outputs.split(s)[0].strip()
    
print(outputs)
ive been watching TV for a long time.



License

Copyright 2021 Hyunwoong Ko.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stop-sequencer-1.2.3.tar.gz (3.7 kB view details)

Uploaded Source

File details

Details for the file stop-sequencer-1.2.3.tar.gz.

File metadata

  • Download URL: stop-sequencer-1.2.3.tar.gz
  • Upload date:
  • Size: 3.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for stop-sequencer-1.2.3.tar.gz
Algorithm Hash digest
SHA256 2eb719ff4cb57a79cf0ddc87b4bf7da11fc9e7a170005eaed17311b015b71d02
MD5 ba7b1760cf678b22a3efba037b31b900
BLAKE2b-256 ec23f76e528167d4e98bdcb1a96c311de6a55817c1d93206cbb3173d56637111

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page