Skip to main content

Async flows

Project description

Storey

CI

Storey is an asynchronous streaming library, for real time event processing and feature extraction.

In This Document

▶ For more information, see the Storey Python package documentation.

API Walkthrough

A Storey flow consist of steps linked together by the build_flow function, each doing it's designated work.

Supported Steps

Input Steps

  • SyncEmitSource
  • AsyncEmitSource
  • CSVSource
  • ParquetSource
  • DataframeSource

Processing Steps

  • Filter
  • Map
  • FlatMap
  • MapWithState
  • Batch(max_events, timeout) - Batches events. This step emits a batch every max_events events, or when timeout seconds have passed since the first event in the batch was received.
  • Choice
  • JoinWithV3IOTable
  • SendToHttp
  • AggregateByKey(aggregations,cache, key=None, emit_policy=EmitEveryEvent(), augmentation_fn=None) - This step aggregates the data into the cache object provided for later persistence, and outputs an event enriched with the requested aggregation features.
  • QueryByKey(features, cache, key=None, augmentation_fn=None, aliases=None) - Similar to to AggregateByKey, but this step is for serving only and does not aggregate the event.
  • NoSqlTarget(table) - Persists the data in table to its associated storage by key.
  • Extend
  • JoinWithTable

Output Steps

  • Complete
  • Reduce
  • StreamTarget
  • CSVTarget
  • ReduceToDataFrame
  • TSDBTarget
  • ParquetTarget

Usage Examples

Using Aggregates

The following example reads user data, creates features using Storey's aggregates, persists the data to V3IO and emits events containing the features to a V3IO Stream for further processing.

from storey import build_flow, SyncEmitSource, Table, V3ioDriver, AggregateByKey, FieldAggregator, NoSqlTarget
from storey.dtypes import SlidingWindows

v3io_web_api = 'https://webapi.change-me.com'
v3io_acceess_key = '1284ne83-i262-46m6-9a23-810n41f169ea'
table_object = Table('/projects/my_features', V3ioDriver(v3io_web_api, v3io_acceess_key))

def enrich(event, state):
    if 'first_activity' not in state:
        state['first_activity'] = event.time
    event.body['time_since_activity'] = (event.time - state['first_activity']).seconds
    state['last_event'] = event.time
    event.body['total_activities'] = state['total_activities'] = state.get('total_activities', 0) + 1
    return event, state

controller = build_flow([
    SyncEmitSource(),
    MapWithState(table_object, enrich, group_by_key=True, full_event=True),
    AggregateByKey([FieldAggregator("number_of_clicks", "click", ["count"],
                                    SlidingWindows(['1h','2h', '24h'], '10m')),
                    FieldAggregator("purchases", "purchase_amount", ["avg", "min", "max"],
                                    SlidingWindows(['1h','2h', '24h'], '10m')),
                    FieldAggregator("failed_activities", "activity", ["count"],
                                    SlidingWindows(['1h'], '10m'),
                                    aggr_filter=lambda element: element['activity_status'] == 'fail'))],
                   table_object),
    NoSqlTarget(table_object),
    StreamTarget(V3ioDriver(v3io_web_api, v3io_acceess_key), 'features_stream')
]).run()

We can also create a serving function, which sole purpose is to read data from the feature store and emit it further

controller = build_flow([
    SyncEmitSource(),
    QueryAggregationByKey([FieldAggregator("number_of_clicks", "click", ["count"],
                                           SlidingWindows(['1h','2h', '24h'], '10m')),
                           FieldAggregator("purchases", "purchase_amount", ["avg", "min", "max"],
                                           SlidingWindows(['1h','2h', '24h'], '10m')),
                           FieldAggregator("failed_activities", "activity", ["count"],
                                           SlidingWindows(['1h'], '10m'),
                                           aggr_filter=lambda element: element['activity_status'] == 'fail'))],
                           table_object)
]).run()

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

storey-0.10.1.tar.gz (106.2 kB view details)

Uploaded Source

Built Distribution

storey-0.10.1-py3-none-any.whl (116.0 kB view details)

Uploaded Python 3

File details

Details for the file storey-0.10.1.tar.gz.

File metadata

  • Download URL: storey-0.10.1.tar.gz
  • Upload date:
  • Size: 106.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for storey-0.10.1.tar.gz
Algorithm Hash digest
SHA256 eda22959717734c6469fbced5a550873d0852ad4ffb5e644c108ebbeb08ce6a5
MD5 dfeee6d2d5e5381a3df48cc2e9b80a80
BLAKE2b-256 301f9912cb3d8abded21a2e1ff3db9c586fa6cd78da7cfe69aff1cce7e8839c8

See more details on using hashes here.

File details

Details for the file storey-0.10.1-py3-none-any.whl.

File metadata

  • Download URL: storey-0.10.1-py3-none-any.whl
  • Upload date:
  • Size: 116.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for storey-0.10.1-py3-none-any.whl
Algorithm Hash digest
SHA256 56502799794d5c864ca271cf0d73105b1b6870d436611e85c2a8b850cc9f02b1
MD5 262ca86c0d3c3deb7702d5fa4ac8f3e0
BLAKE2b-256 8c41a332e482fb79fa63f1241eedd801f6e770f6085cb1cd5c8878a240ddd92f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page