Skip to main content

Async flows

Project description

Storey

CI

Storey is an asynchronous streaming library, for real time event processing and feature extraction.

In This Document

▶ For more information, see the Storey Python package documentation.

API Walkthrough

A Storey flow consist of steps linked together by the build_flow function, each doing it's designated work.

Supported Steps

Input Steps

  • SyncEmitSource
  • AsyncEmitSource
  • CSVSource
  • ParquetSource
  • DataframeSource

Processing Steps

  • Filter
  • Map
  • FlatMap
  • MapWithState
  • Batch(max_events, timeout) - Batches events. This step emits a batch every max_events events, or when timeout seconds have passed since the first event in the batch was received.
  • Choice
  • JoinWithV3IOTable
  • SendToHttp
  • AggregateByKey(aggregations,cache, key=None, emit_policy=EmitEveryEvent(), augmentation_fn=None) - This step aggregates the data into the cache object provided for later persistence, and outputs an event enriched with the requested aggregation features.
  • QueryByKey(features, cache, key=None, augmentation_fn=None, aliases=None) - Similar to to AggregateByKey, but this step is for serving only and does not aggregate the event.
  • NoSqlTarget(table) - Persists the data in table to its associated storage by key.
  • Extend
  • JoinWithTable

Output Steps

  • Complete
  • Reduce
  • StreamTarget
  • CSVTarget
  • ReduceToDataFrame
  • TSDBTarget
  • ParquetTarget

Usage Examples

Using Aggregates

The following example reads user data, creates features using Storey's aggregates, persists the data to V3IO and emits events containing the features to a V3IO Stream for further processing.

from storey import build_flow, SyncEmitSource, Table, V3ioDriver, AggregateByKey, FieldAggregator, NoSqlTarget
from storey.dtypes import SlidingWindows

v3io_web_api = 'https://webapi.change-me.com'
v3io_acceess_key = '1284ne83-i262-46m6-9a23-810n41f169ea'
table_object = Table('/projects/my_features', V3ioDriver(v3io_web_api, v3io_acceess_key))

def enrich(event, state):
    if 'first_activity' not in state:
        state['first_activity'] = event.time
    event.body['time_since_activity'] = (event.time - state['first_activity']).seconds
    state['last_event'] = event.time
    event.body['total_activities'] = state['total_activities'] = state.get('total_activities', 0) + 1
    return event, state

controller = build_flow([
    SyncEmitSource(),
    MapWithState(table_object, enrich, group_by_key=True, full_event=True),
    AggregateByKey([FieldAggregator("number_of_clicks", "click", ["count"],
                                    SlidingWindows(['1h','2h', '24h'], '10m')),
                    FieldAggregator("purchases", "purchase_amount", ["avg", "min", "max"],
                                    SlidingWindows(['1h','2h', '24h'], '10m')),
                    FieldAggregator("failed_activities", "activity", ["count"],
                                    SlidingWindows(['1h'], '10m'),
                                    aggr_filter=lambda element: element['activity_status'] == 'fail'))],
                   table_object),
    NoSqlTarget(table_object),
    StreamTarget(V3ioDriver(v3io_web_api, v3io_acceess_key), 'features_stream')
]).run()

We can also create a serving function, which sole purpose is to read data from the feature store and emit it further

controller = build_flow([
    SyncEmitSource(),
    QueryAggregationByKey([FieldAggregator("number_of_clicks", "click", ["count"],
                                           SlidingWindows(['1h','2h', '24h'], '10m')),
                           FieldAggregator("purchases", "purchase_amount", ["avg", "min", "max"],
                                           SlidingWindows(['1h','2h', '24h'], '10m')),
                           FieldAggregator("failed_activities", "activity", ["count"],
                                           SlidingWindows(['1h'], '10m'),
                                           aggr_filter=lambda element: element['activity_status'] == 'fail'))],
                           table_object)
]).run()

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

storey-0.5.1.tar.gz (89.9 kB view details)

Uploaded Source

Built Distribution

storey-0.5.1-py3-none-any.whl (99.3 kB view details)

Uploaded Python 3

File details

Details for the file storey-0.5.1.tar.gz.

File metadata

  • Download URL: storey-0.5.1.tar.gz
  • Upload date:
  • Size: 89.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.1.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for storey-0.5.1.tar.gz
Algorithm Hash digest
SHA256 26f083251ae421ea0544cf83397c30aafbe750f87987315a2efa30a9e56a9ba9
MD5 55c05d1691b93275067f8af724d420a2
BLAKE2b-256 ddd707c619a1afaff6c172ea26771850bec11a565d1bceb2f91faa7789bfee77

See more details on using hashes here.

File details

Details for the file storey-0.5.1-py3-none-any.whl.

File metadata

  • Download URL: storey-0.5.1-py3-none-any.whl
  • Upload date:
  • Size: 99.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.1.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for storey-0.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 eb3cba0b3e39a5c2ea57bdb6c5e0c65e2646ad0d061c6411f4052873f04fd493
MD5 6d899a2d868ae0afc03db61afb56605f
BLAKE2b-256 75e9db403530806d48355a898253cf68a9a1957638e74b7c078ae34f76418c5e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page