Skip to main content

Async flows

Project description

Storey

CI

Storey is an asynchronous streaming library, for real time event processing and feature extraction.

In This Document

▶ For more information, see the Storey Python package documentation.

API Walkthrough

A Storey flow consist of steps linked together by the build_flow function, each doing it's designated work.

Supported Steps

Input Steps

  • SyncEmitSource
  • AsyncEmitSource
  • CSVSource
  • ParquetSource
  • DataframeSource

Processing Steps

  • Filter
  • Map
  • FlatMap
  • MapWithState
  • Batch(max_events, timeout) - Batches events. This step emits a batch every max_events events, or when timeout seconds have passed since the first event in the batch was received.
  • Choice
  • JoinWithV3IOTable
  • SendToHttp
  • AggregateByKey(aggregations,cache, key=None, emit_policy=EmitEveryEvent(), augmentation_fn=None) - This step aggregates the data into the cache object provided for later persistence, and outputs an event enriched with the requested aggregation features.
  • QueryByKey(features, cache, key=None, augmentation_fn=None, aliases=None) - Similar to to AggregateByKey, but this step is for serving only and does not aggregate the event.
  • NoSqlTarget(table) - Persists the data in table to its associated storage by key.
  • Extend
  • JoinWithTable

Output Steps

  • Complete
  • Reduce
  • StreamTarget
  • CSVTarget
  • ReduceToDataFrame
  • TSDBTarget
  • ParquetTarget

Usage Examples

Using Aggregates

The following example reads user data, creates features using Storey's aggregates, persists the data to V3IO and emits events containing the features to a V3IO Stream for further processing.

from storey import build_flow, SyncEmitSource, Table, V3ioDriver, AggregateByKey, FieldAggregator, NoSqlTarget
from storey.dtypes import SlidingWindows

v3io_web_api = 'https://webapi.change-me.com'
v3io_acceess_key = '1284ne83-i262-46m6-9a23-810n41f169ea'
table_object = Table('/projects/my_features', V3ioDriver(v3io_web_api, v3io_acceess_key))

def enrich(event, state):
    if 'first_activity' not in state:
        state['first_activity'] = event.time
    event.body['time_since_activity'] = (event.time - state['first_activity']).seconds
    state['last_event'] = event.time
    event.body['total_activities'] = state['total_activities'] = state.get('total_activities', 0) + 1
    return event, state

controller = build_flow([
    SyncEmitSource(),
    MapWithState(table_object, enrich, group_by_key=True, full_event=True),
    AggregateByKey([FieldAggregator("number_of_clicks", "click", ["count"],
                                    SlidingWindows(['1h','2h', '24h'], '10m')),
                    FieldAggregator("purchases", "purchase_amount", ["avg", "min", "max"],
                                    SlidingWindows(['1h','2h', '24h'], '10m')),
                    FieldAggregator("failed_activities", "activity", ["count"],
                                    SlidingWindows(['1h'], '10m'),
                                    aggr_filter=lambda element: element['activity_status'] == 'fail'))],
                   table_object),
    NoSqlTarget(table_object),
    StreamTarget(V3ioDriver(v3io_web_api, v3io_acceess_key), 'features_stream')
]).run()

We can also create a serving function, which sole purpose is to read data from the feature store and emit it further

controller = build_flow([
    SyncEmitSource(),
    QueryAggregationByKey([FieldAggregator("number_of_clicks", "click", ["count"],
                                           SlidingWindows(['1h','2h', '24h'], '10m')),
                           FieldAggregator("purchases", "purchase_amount", ["avg", "min", "max"],
                                           SlidingWindows(['1h','2h', '24h'], '10m')),
                           FieldAggregator("failed_activities", "activity", ["count"],
                                           SlidingWindows(['1h'], '10m'),
                                           aggr_filter=lambda element: element['activity_status'] == 'fail'))],
                           table_object)
]).run()

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

storey-0.7.6.tar.gz (99.0 kB view details)

Uploaded Source

Built Distribution

storey-0.7.6-py3-none-any.whl (108.5 kB view details)

Uploaded Python 3

File details

Details for the file storey-0.7.6.tar.gz.

File metadata

  • Download URL: storey-0.7.6.tar.gz
  • Upload date:
  • Size: 99.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.6

File hashes

Hashes for storey-0.7.6.tar.gz
Algorithm Hash digest
SHA256 562675c275abfee754a8080cd7e3d3f41d9dbace75b8306ea1c7f672e181f75d
MD5 d179260f09c830b3d5d9ece840eecc31
BLAKE2b-256 a396082dec0fa63bb884527982c9f23c070521e9ecf1658033b530ca65e5b9d6

See more details on using hashes here.

File details

Details for the file storey-0.7.6-py3-none-any.whl.

File metadata

  • Download URL: storey-0.7.6-py3-none-any.whl
  • Upload date:
  • Size: 108.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.6

File hashes

Hashes for storey-0.7.6-py3-none-any.whl
Algorithm Hash digest
SHA256 05badf95760efc39e99503107a1b48907d76cc54c4fc1a8fdd78c28678f9029b
MD5 bfc8485c2c56e8d478af50baf281d42b
BLAKE2b-256 16d6b4432268fb3dad53014701e2cc21ae9d1be9853ba48aa7f75d98d8fd4251

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page