Skip to main content

Async flows

Project description

Storey

CI

Storey is an asynchronous streaming library, for real time event processing and feature extraction.

In This Document

▶ For more information, see the Storey Python package documentation.

API Walkthrough

A Storey flow consist of steps linked together by the build_flow function, each doing it's designated work.

Supported Steps

Input Steps

  • SyncEmitSource
  • AsyncEmitSource
  • CSVSource
  • ParquetSource
  • DataframeSource

Processing Steps

  • Filter
  • Map
  • FlatMap
  • MapWithState
  • Batch(max_events, timeout) - Batches events. This step emits a batch every max_events events, or when timeout seconds have passed since the first event in the batch was received.
  • Choice
  • JoinWithV3IOTable
  • SendToHttp
  • AggregateByKey(aggregations,cache, key=None, emit_policy=EmitEveryEvent(), augmentation_fn=None) - This step aggregates the data into the cache object provided for later persistence, and outputs an event enriched with the requested aggregation features.
  • QueryByKey(features, cache, key=None, augmentation_fn=None, aliases=None) - Similar to to AggregateByKey, but this step is for serving only and does not aggregate the event.
  • NoSqlTarget(table) - Persists the data in table to its associated storage by key.
  • Extend
  • JoinWithTable

Output Steps

  • Complete
  • Reduce
  • StreamTarget
  • CSVTarget
  • ReduceToDataFrame
  • TSDBTarget
  • ParquetTarget

Usage Examples

Using Aggregates

The following example reads user data, creates features using Storey's aggregates, persists the data to V3IO and emits events containing the features to a V3IO Stream for further processing.

from storey import build_flow, SyncEmitSource, Table, V3ioDriver, AggregateByKey, FieldAggregator, NoSqlTarget
from storey.dtypes import SlidingWindows

v3io_web_api = 'https://webapi.change-me.com'
v3io_acceess_key = '1284ne83-i262-46m6-9a23-810n41f169ea'
table_object = Table('/projects/my_features', V3ioDriver(v3io_web_api, v3io_acceess_key))

def enrich(event, state):
    if 'first_activity' not in state:
        state['first_activity'] = event.time
    event.body['time_since_activity'] = (event.time - state['first_activity']).seconds
    state['last_event'] = event.time
    event.body['total_activities'] = state['total_activities'] = state.get('total_activities', 0) + 1
    return event, state

controller = build_flow([
    SyncEmitSource(),
    MapWithState(table_object, enrich, group_by_key=True, full_event=True),
    AggregateByKey([FieldAggregator("number_of_clicks", "click", ["count"],
                                    SlidingWindows(['1h','2h', '24h'], '10m')),
                    FieldAggregator("purchases", "purchase_amount", ["avg", "min", "max"],
                                    SlidingWindows(['1h','2h', '24h'], '10m')),
                    FieldAggregator("failed_activities", "activity", ["count"],
                                    SlidingWindows(['1h'], '10m'),
                                    aggr_filter=lambda element: element['activity_status'] == 'fail'))],
                   table_object),
    NoSqlTarget(table_object),
    StreamTarget(V3ioDriver(v3io_web_api, v3io_acceess_key), 'features_stream')
]).run()

We can also create a serving function, which sole purpose is to read data from the feature store and emit it further

controller = build_flow([
    SyncEmitSource(),
    QueryAggregationByKey([FieldAggregator("number_of_clicks", "click", ["count"],
                                           SlidingWindows(['1h','2h', '24h'], '10m')),
                           FieldAggregator("purchases", "purchase_amount", ["avg", "min", "max"],
                                           SlidingWindows(['1h','2h', '24h'], '10m')),
                           FieldAggregator("failed_activities", "activity", ["count"],
                                           SlidingWindows(['1h'], '10m'),
                                           aggr_filter=lambda element: element['activity_status'] == 'fail'))],
                           table_object)
]).run()

Project details


Release history Release notifications | RSS feed

This version

1.0.2

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

storey-1.0.2.tar.gz (108.3 kB view details)

Uploaded Source

Built Distribution

storey-1.0.2-py3-none-any.whl (118.1 kB view details)

Uploaded Python 3

File details

Details for the file storey-1.0.2.tar.gz.

File metadata

  • Download URL: storey-1.0.2.tar.gz
  • Upload date:
  • Size: 108.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for storey-1.0.2.tar.gz
Algorithm Hash digest
SHA256 5a008909b107cff13a8455f516bbfa646779ed16baa63af6f7c2e76935051383
MD5 0cb3a91c289c1a9eecd21361ce29c1c9
BLAKE2b-256 62cd7bcb9fb0e0f3fed059cb1eed3d050fe014077fa33910bd44ef5558f317f2

See more details on using hashes here.

File details

Details for the file storey-1.0.2-py3-none-any.whl.

File metadata

  • Download URL: storey-1.0.2-py3-none-any.whl
  • Upload date:
  • Size: 118.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for storey-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 9a299fe4caa74a09336a2868d7a88c178757941191f51181714f93818d8acd48
MD5 e67ed0f698aedfbcedb87560aeb50723
BLAKE2b-256 6c851de83926386b3c1ec4c16caf87daf3a5c9f62fd66e820a5af00640540cd3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page