Skip to main content

Async flows

Project description

Storey

CI

Storey is an asynchronous streaming library, for real time event processing and feature extraction.

In This Document

▶ For more information, see the Storey Python package documentation.

API Walkthrough

A Storey flow consist of steps linked together by the build_flow function, each doing it's designated work.

Supported Steps

Input Steps

  • SyncEmitSource
  • AsyncEmitSource
  • CSVSource
  • ParquetSource
  • DataframeSource

Processing Steps

  • Filter
  • Map
  • FlatMap
  • MapWithState
  • Batch(max_events, timeout) - Batches events. This step emits a batch every max_events events, or when timeout seconds have passed since the first event in the batch was received.
  • Choice
  • JoinWithV3IOTable
  • SendToHttp
  • AggregateByKey(aggregations,cache, key=None, emit_policy=EmitEveryEvent(), augmentation_fn=None) - This step aggregates the data into the cache object provided for later persistence, and outputs an event enriched with the requested aggregation features.
  • QueryByKey(features, cache, key=None, augmentation_fn=None, aliases=None) - Similar to to AggregateByKey, but this step is for serving only and does not aggregate the event.
  • NoSqlTarget(table) - Persists the data in table to its associated storage by key.
  • Extend
  • JoinWithTable

Output Steps

  • Complete
  • Reduce
  • StreamTarget
  • CSVTarget
  • ReduceToDataFrame
  • TSDBTarget
  • ParquetTarget

Usage Examples

Using Aggregates

The following example reads user data, creates features using Storey's aggregates, persists the data to V3IO and emits events containing the features to a V3IO Stream for further processing.

from storey import build_flow, SyncEmitSource, Table, V3ioDriver, AggregateByKey, FieldAggregator, NoSqlTarget
from storey.dtypes import SlidingWindows

v3io_web_api = "https://webapi.change-me.com"
v3io_acceess_key = "1284ne83-i262-46m6-9a23-810n41f169ea"
table_object = Table("/projects/my_features", V3ioDriver(v3io_web_api, v3io_acceess_key))

def enrich(event, state):
    if "first_activity" not in state:
        state["first_activity"] = event.time
    event.body["time_since_activity"] = (event.body["time"] - state["first_activity"]).seconds
    state["last_event"] = event.time
    event.body["total_activities"] = state["total_activities"] = state.get("total_activities", 0) + 1
    return event, state

controller = build_flow([
    SyncEmitSource(),
    MapWithState(table_object, enrich, group_by_key=True, full_event=True),
    AggregateByKey([FieldAggregator("number_of_clicks", "click", ["count"],
                                    SlidingWindows(["1h","2h", "24h"], "10m")),
                    FieldAggregator("purchases", "purchase_amount", ["avg", "min", "max"],
                                    SlidingWindows(["1h","2h", "24h"], "10m")),
                    FieldAggregator("failed_activities", "activity", ["count"],
                                    SlidingWindows(["1h"], "10m"),
                                    aggr_filter=lambda element: element["activity_status"] == "fail"))],
                   table_object,
                   time_field="time"),
    NoSqlTarget(table_object),
    StreamTarget(V3ioDriver(v3io_web_api, v3io_acceess_key), "features_stream")
]).run()

We can also create a serving function, which sole purpose is to read data from the feature store and emit it further

controller = build_flow([
    SyncEmitSource(),
    QueryAggregationByKey([FieldAggregator("number_of_clicks", "click", ["count"],
                                           SlidingWindows(["1h","2h", "24h"], "10m")),
                           FieldAggregator("purchases", "purchase_amount", ["avg", "min", "max"],
                                           SlidingWindows(["1h","2h", "24h"], "10m")),
                           FieldAggregator("failed_activities", "activity", ["count"],
                                           SlidingWindows(["1h"], "10m"),
                                           aggr_filter=lambda element: element["activity_status"] == "fail"))],
                           table_object,
                           time_field="time")
]).run()

Project details


Release history Release notifications | RSS feed

This version

1.3.4

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

storey-1.3.4.tar.gz (131.4 kB view details)

Uploaded Source

Built Distribution

storey-1.3.4-py3-none-any.whl (155.8 kB view details)

Uploaded Python 3

File details

Details for the file storey-1.3.4.tar.gz.

File metadata

  • Download URL: storey-1.3.4.tar.gz
  • Upload date:
  • Size: 131.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for storey-1.3.4.tar.gz
Algorithm Hash digest
SHA256 1ab0ef514676c85168ae1b6b265062a271e4bc723c901236b41d5c4dde1ee90d
MD5 1873c046e29fbd67f4bde6a5daf7a700
BLAKE2b-256 1de121f07d8282759ba9d6eb74ede21a4e0fdebeefdfad0cc6218d089985d2a7

See more details on using hashes here.

File details

Details for the file storey-1.3.4-py3-none-any.whl.

File metadata

  • Download URL: storey-1.3.4-py3-none-any.whl
  • Upload date:
  • Size: 155.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for storey-1.3.4-py3-none-any.whl
Algorithm Hash digest
SHA256 ce615771c94db4a2aeee912584f91e6be0b853474e541ad76cce4d215742cc99
MD5 5026109330fd429b6291a5c81b796471
BLAKE2b-256 57b44adcdcce75d0d45394efcb6b36698bda2022788ef17f6432b5ac12b74e09

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page