Skip to main content

Async flows

Project description

Storey

CI

Storey is an asynchronous streaming library, for real time event processing and feature extraction.

In This Document

▶ For more information, see the Storey Python package documentation.

API Walkthrough

A Storey flow consist of steps linked together by the build_flow function, each doing it's designated work.

Supported Steps

Input Steps

  • SyncEmitSource
  • AsyncEmitSource
  • CSVSource
  • ParquetSource
  • DataframeSource

Processing Steps

  • Filter
  • Map
  • FlatMap
  • MapWithState
  • Batch(max_events, timeout) - Batches events. This step emits a batch every max_events events, or when timeout seconds have passed since the first event in the batch was received.
  • Choice
  • JoinWithV3IOTable
  • SendToHttp
  • AggregateByKey(aggregations,cache, key=None, emit_policy=EmitEveryEvent(), augmentation_fn=None) - This step aggregates the data into the cache object provided for later persistence, and outputs an event enriched with the requested aggregation features.
  • QueryByKey(features, cache, key=None, augmentation_fn=None, aliases=None) - Similar to to AggregateByKey, but this step is for serving only and does not aggregate the event.
  • NoSqlTarget(table) - Persists the data in table to its associated storage by key.
  • Extend
  • JoinWithTable

Output Steps

  • Complete
  • Reduce
  • StreamTarget
  • CSVTarget
  • ReduceToDataFrame
  • TSDBTarget
  • ParquetTarget

Usage Examples

Using Aggregates

The following example reads user data, creates features using Storey's aggregates, persists the data to V3IO and emits events containing the features to a V3IO Stream for further processing.

from storey import build_flow, SyncEmitSource, Table, V3ioDriver, AggregateByKey, FieldAggregator, NoSqlTarget
from storey.dtypes import SlidingWindows

v3io_web_api = "https://webapi.change-me.com"
v3io_acceess_key = "1284ne83-i262-46m6-9a23-810n41f169ea"
table_object = Table("/projects/my_features", V3ioDriver(v3io_web_api, v3io_acceess_key))

def enrich(event, state):
    if "first_activity" not in state:
        state["first_activity"] = event.time
    event.body["time_since_activity"] = (event.body["time"] - state["first_activity"]).seconds
    state["last_event"] = event.time
    event.body["total_activities"] = state["total_activities"] = state.get("total_activities", 0) + 1
    return event, state

controller = build_flow([
    SyncEmitSource(),
    MapWithState(table_object, enrich, group_by_key=True, full_event=True),
    AggregateByKey([FieldAggregator("number_of_clicks", "click", ["count"],
                                    SlidingWindows(["1h","2h", "24h"], "10m")),
                    FieldAggregator("purchases", "purchase_amount", ["avg", "min", "max"],
                                    SlidingWindows(["1h","2h", "24h"], "10m")),
                    FieldAggregator("failed_activities", "activity", ["count"],
                                    SlidingWindows(["1h"], "10m"),
                                    aggr_filter=lambda element: element["activity_status"] == "fail"))],
                   table_object,
                   time_field="time"),
    NoSqlTarget(table_object),
    StreamTarget(V3ioDriver(v3io_web_api, v3io_acceess_key), "features_stream")
]).run()

We can also create a serving function, which sole purpose is to read data from the feature store and emit it further

controller = build_flow([
    SyncEmitSource(),
    QueryAggregationByKey([FieldAggregator("number_of_clicks", "click", ["count"],
                                           SlidingWindows(["1h","2h", "24h"], "10m")),
                           FieldAggregator("purchases", "purchase_amount", ["avg", "min", "max"],
                                           SlidingWindows(["1h","2h", "24h"], "10m")),
                           FieldAggregator("failed_activities", "activity", ["count"],
                                           SlidingWindows(["1h"], "10m"),
                                           aggr_filter=lambda element: element["activity_status"] == "fail"))],
                           table_object,
                           time_field="time")
]).run()

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

storey-1.3.5.tar.gz (131.4 kB view details)

Uploaded Source

Built Distribution

storey-1.3.5-py3-none-any.whl (155.9 kB view details)

Uploaded Python 3

File details

Details for the file storey-1.3.5.tar.gz.

File metadata

  • Download URL: storey-1.3.5.tar.gz
  • Upload date:
  • Size: 131.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for storey-1.3.5.tar.gz
Algorithm Hash digest
SHA256 74aad7719ef284cd780b4ebc61a7a5854af6d71f065f7b7c2fec2fa405ff8054
MD5 60702e4ca1d5246af71027d2538f7d04
BLAKE2b-256 192ad36bf589d9246789303674ba6da59c2c2e0e9c4ac779990d25a62b2eaa14

See more details on using hashes here.

File details

Details for the file storey-1.3.5-py3-none-any.whl.

File metadata

  • Download URL: storey-1.3.5-py3-none-any.whl
  • Upload date:
  • Size: 155.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for storey-1.3.5-py3-none-any.whl
Algorithm Hash digest
SHA256 03b0447340462cfefd14e79c2c744c0647fd752b7f5374300490b736098b744f
MD5 f64d8eaf28a20a7c3eae97037b38e9ad
BLAKE2b-256 76bfa878825e0d187468d097c832b387af57ec839de81a7f5b36b5efda7f45b7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page