Skip to main content

Async flows

Project description

Storey

CI

Storey is an asynchronous streaming library, for real time event processing and feature extraction.

In This Document

▶ For more information, see the Storey Python package documentation.

API Walkthrough

A Storey flow consist of steps linked together by the build_flow function, each doing it's designated work.

Supported Steps

Input Steps

  • SyncEmitSource
  • AsyncEmitSource
  • CSVSource
  • ParquetSource
  • DataframeSource

Processing Steps

  • Filter
  • Map
  • FlatMap
  • MapWithState
  • Batch(max_events, timeout) - Batches events. This step emits a batch every max_events events, or when timeout seconds have passed since the first event in the batch was received.
  • Choice
  • JoinWithV3IOTable
  • SendToHttp
  • AggregateByKey(aggregations,cache, key=None, emit_policy=EmitEveryEvent(), augmentation_fn=None) - This step aggregates the data into the cache object provided for later persistence, and outputs an event enriched with the requested aggregation features.
  • QueryByKey(features, cache, key=None, augmentation_fn=None, aliases=None) - Similar to to AggregateByKey, but this step is for serving only and does not aggregate the event.
  • NoSqlTarget(table) - Persists the data in table to its associated storage by key.
  • Extend
  • JoinWithTable

Output Steps

  • Complete
  • Reduce
  • StreamTarget
  • CSVTarget
  • ReduceToDataFrame
  • TSDBTarget
  • ParquetTarget

Usage Examples

Using Aggregates

The following example reads user data, creates features using Storey's aggregates, persists the data to V3IO and emits events containing the features to a V3IO Stream for further processing.

from storey import build_flow, SyncEmitSource, Table, V3ioDriver, AggregateByKey, FieldAggregator, NoSqlTarget
from storey.dtypes import SlidingWindows

v3io_web_api = "https://webapi.change-me.com"
v3io_acceess_key = "1284ne83-i262-46m6-9a23-810n41f169ea"
table_object = Table("/projects/my_features", V3ioDriver(v3io_web_api, v3io_acceess_key))

def enrich(event, state):
    if "first_activity" not in state:
        state["first_activity"] = event.time
    event.body["time_since_activity"] = (event.body["time"] - state["first_activity"]).seconds
    state["last_event"] = event.time
    event.body["total_activities"] = state["total_activities"] = state.get("total_activities", 0) + 1
    return event, state

controller = build_flow([
    SyncEmitSource(),
    MapWithState(table_object, enrich, group_by_key=True, full_event=True),
    AggregateByKey([FieldAggregator("number_of_clicks", "click", ["count"],
                                    SlidingWindows(["1h","2h", "24h"], "10m")),
                    FieldAggregator("purchases", "purchase_amount", ["avg", "min", "max"],
                                    SlidingWindows(["1h","2h", "24h"], "10m")),
                    FieldAggregator("failed_activities", "activity", ["count"],
                                    SlidingWindows(["1h"], "10m"),
                                    aggr_filter=lambda element: element["activity_status"] == "fail"))],
                   table_object,
                   time_field="time"),
    NoSqlTarget(table_object),
    StreamTarget(V3ioDriver(v3io_web_api, v3io_acceess_key), "features_stream")
]).run()

We can also create a serving function, which sole purpose is to read data from the feature store and emit it further

controller = build_flow([
    SyncEmitSource(),
    QueryAggregationByKey([FieldAggregator("number_of_clicks", "click", ["count"],
                                           SlidingWindows(["1h","2h", "24h"], "10m")),
                           FieldAggregator("purchases", "purchase_amount", ["avg", "min", "max"],
                                           SlidingWindows(["1h","2h", "24h"], "10m")),
                           FieldAggregator("failed_activities", "activity", ["count"],
                                           SlidingWindows(["1h"], "10m"),
                                           aggr_filter=lambda element: element["activity_status"] == "fail"))],
                           table_object,
                           time_field="time")
]).run()

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

storey-1.4.3.tar.gz (132.8 kB view details)

Uploaded Source

Built Distribution

storey-1.4.3-py3-none-any.whl (157.4 kB view details)

Uploaded Python 3

File details

Details for the file storey-1.4.3.tar.gz.

File metadata

  • Download URL: storey-1.4.3.tar.gz
  • Upload date:
  • Size: 132.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for storey-1.4.3.tar.gz
Algorithm Hash digest
SHA256 a156d82a5c85f557649d359ac500f2b90018c0d3e55bf46cb3c30364ffb8e1e3
MD5 b753e9196f255c75a726c6f32486ac35
BLAKE2b-256 37c5e8e4d781f2a5ee1999b7b06ff3b1818a8b12f56e4e194c050eed7413c713

See more details on using hashes here.

File details

Details for the file storey-1.4.3-py3-none-any.whl.

File metadata

  • Download URL: storey-1.4.3-py3-none-any.whl
  • Upload date:
  • Size: 157.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for storey-1.4.3-py3-none-any.whl
Algorithm Hash digest
SHA256 7cd8261dc59f2bb35d709495ee3afa5acd3266c425648ed34896a3d438bbc071
MD5 67d14d18f3740f3cedb073ab36174261
BLAKE2b-256 b1db6af31ab641725d37dc5d543cd83c7717ddf8102ad69362c2df621f604030

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page