Skip to main content

Async flows

Project description

Storey

CI

Storey is an asynchronous streaming library, for real time event processing and feature extraction.

In This Document

▶ For more information, see the Storey Python package documentation.

API Walkthrough

A Storey flow consist of steps linked together by the build_flow function, each doing it's designated work.

Supported Steps

Input Steps

  • SyncEmitSource
  • AsyncEmitSource
  • CSVSource
  • ParquetSource
  • DataframeSource

Processing Steps

  • Filter
  • Map
  • FlatMap
  • MapWithState
  • Batch(max_events, timeout) - Batches events. This step emits a batch every max_events events, or when timeout seconds have passed since the first event in the batch was received.
  • Choice
  • JoinWithV3IOTable
  • SendToHttp
  • AggregateByKey(aggregations,cache, key=None, emit_policy=EmitEveryEvent(), augmentation_fn=None) - This step aggregates the data into the cache object provided for later persistence, and outputs an event enriched with the requested aggregation features.
  • QueryByKey(features, cache, key=None, augmentation_fn=None, aliases=None) - Similar to to AggregateByKey, but this step is for serving only and does not aggregate the event.
  • NoSqlTarget(table) - Persists the data in table to its associated storage by key.
  • Extend
  • JoinWithTable

Output Steps

  • Complete
  • Reduce
  • StreamTarget
  • CSVTarget
  • ReduceToDataFrame
  • TSDBTarget
  • ParquetTarget

Usage Examples

Using Aggregates

The following example reads user data, creates features using Storey's aggregates, persists the data to V3IO and emits events containing the features to a V3IO Stream for further processing.

from storey import build_flow, SyncEmitSource, Table, V3ioDriver, AggregateByKey, FieldAggregator, NoSqlTarget
from storey.dtypes import SlidingWindows

v3io_web_api = "https://webapi.change-me.com"
v3io_acceess_key = "1284ne83-i262-46m6-9a23-810n41f169ea"
table_object = Table("/projects/my_features", V3ioDriver(v3io_web_api, v3io_acceess_key))

def enrich(event, state):
    if "first_activity" not in state:
        state["first_activity"] = event.time
    event.body["time_since_activity"] = (event.body["time"] - state["first_activity"]).seconds
    state["last_event"] = event.time
    event.body["total_activities"] = state["total_activities"] = state.get("total_activities", 0) + 1
    return event, state

controller = build_flow([
    SyncEmitSource(),
    MapWithState(table_object, enrich, group_by_key=True, full_event=True),
    AggregateByKey([FieldAggregator("number_of_clicks", "click", ["count"],
                                    SlidingWindows(["1h","2h", "24h"], "10m")),
                    FieldAggregator("purchases", "purchase_amount", ["avg", "min", "max"],
                                    SlidingWindows(["1h","2h", "24h"], "10m")),
                    FieldAggregator("failed_activities", "activity", ["count"],
                                    SlidingWindows(["1h"], "10m"),
                                    aggr_filter=lambda element: element["activity_status"] == "fail"))],
                   table_object,
                   time_field="time"),
    NoSqlTarget(table_object),
    StreamTarget(V3ioDriver(v3io_web_api, v3io_acceess_key), "features_stream")
]).run()

We can also create a serving function, which sole purpose is to read data from the feature store and emit it further

controller = build_flow([
    SyncEmitSource(),
    QueryAggregationByKey([FieldAggregator("number_of_clicks", "click", ["count"],
                                           SlidingWindows(["1h","2h", "24h"], "10m")),
                           FieldAggregator("purchases", "purchase_amount", ["avg", "min", "max"],
                                           SlidingWindows(["1h","2h", "24h"], "10m")),
                           FieldAggregator("failed_activities", "activity", ["count"],
                                           SlidingWindows(["1h"], "10m"),
                                           aggr_filter=lambda element: element["activity_status"] == "fail"))],
                           table_object,
                           time_field="time")
]).run()

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

storey-1.6.18.tar.gz (139.4 kB view details)

Uploaded Source

Built Distribution

storey-1.6.18-py3-none-any.whl (162.5 kB view details)

Uploaded Python 3

File details

Details for the file storey-1.6.18.tar.gz.

File metadata

  • Download URL: storey-1.6.18.tar.gz
  • Upload date:
  • Size: 139.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for storey-1.6.18.tar.gz
Algorithm Hash digest
SHA256 d872cc0b8f8f813931c3d06b04bb7b8f3f3543ff17e7a3a60eb25b5b8d776149
MD5 9af8cc0c541ee30e0a558696df522036
BLAKE2b-256 3544829e847f69a959177573bbbb473daff0eff853ec9e5893fe6c4e14731d27

See more details on using hashes here.

File details

Details for the file storey-1.6.18-py3-none-any.whl.

File metadata

  • Download URL: storey-1.6.18-py3-none-any.whl
  • Upload date:
  • Size: 162.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for storey-1.6.18-py3-none-any.whl
Algorithm Hash digest
SHA256 6423d121a378c9c3940d32bf12d8ca87cb0dbb561a63d1e90364ab74c545f116
MD5 68285a8f011e152ca0a2afe76f5cdf74
BLAKE2b-256 bb535f919b196fab6755eaeeae9bd8ffd78032202c620ed1d9dedf41ea034cdb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page