Skip to main content

Async flows

Project description

Storey

CI

Storey is an asynchronous streaming library, for real time event processing and feature extraction.

In This Document

▶ For more information, see the Storey Python package documentation.

API Walkthrough

A Storey flow consist of steps linked together by the build_flow function, each doing it's designated work.

Supported Steps

Input Steps

  • SyncEmitSource
  • AsyncEmitSource
  • CSVSource
  • ParquetSource
  • DataframeSource

Processing Steps

  • Filter
  • Map
  • FlatMap
  • MapWithState
  • Batch(max_events, timeout) - Batches events. This step emits a batch every max_events events, or when timeout seconds have passed since the first event in the batch was received.
  • Choice
  • JoinWithV3IOTable
  • SendToHttp
  • AggregateByKey(aggregations,cache, key=None, emit_policy=EmitEveryEvent(), augmentation_fn=None) - This step aggregates the data into the cache object provided for later persistence, and outputs an event enriched with the requested aggregation features.
  • QueryByKey(features, cache, key=None, augmentation_fn=None, aliases=None) - Similar to to AggregateByKey, but this step is for serving only and does not aggregate the event.
  • NoSqlTarget(table) - Persists the data in table to its associated storage by key.
  • Extend
  • JoinWithTable

Output Steps

  • Complete
  • Reduce
  • StreamTarget
  • CSVTarget
  • ReduceToDataFrame
  • TSDBTarget
  • ParquetTarget

Usage Examples

Using Aggregates

The following example reads user data, creates features using Storey's aggregates, persists the data to V3IO and emits events containing the features to a V3IO Stream for further processing.

from storey import build_flow, SyncEmitSource, Table, V3ioDriver, AggregateByKey, FieldAggregator, NoSqlTarget
from storey.dtypes import SlidingWindows

v3io_web_api = "https://webapi.change-me.com"
v3io_acceess_key = "1284ne83-i262-46m6-9a23-810n41f169ea"
table_object = Table("/projects/my_features", V3ioDriver(v3io_web_api, v3io_acceess_key))

def enrich(event, state):
    if "first_activity" not in state:
        state["first_activity"] = event.time
    event.body["time_since_activity"] = (event.body["time"] - state["first_activity"]).seconds
    state["last_event"] = event.time
    event.body["total_activities"] = state["total_activities"] = state.get("total_activities", 0) + 1
    return event, state

controller = build_flow([
    SyncEmitSource(),
    MapWithState(table_object, enrich, group_by_key=True, full_event=True),
    AggregateByKey([FieldAggregator("number_of_clicks", "click", ["count"],
                                    SlidingWindows(["1h","2h", "24h"], "10m")),
                    FieldAggregator("purchases", "purchase_amount", ["avg", "min", "max"],
                                    SlidingWindows(["1h","2h", "24h"], "10m")),
                    FieldAggregator("failed_activities", "activity", ["count"],
                                    SlidingWindows(["1h"], "10m"),
                                    aggr_filter=lambda element: element["activity_status"] == "fail"))],
                   table_object,
                   time_field="time"),
    NoSqlTarget(table_object),
    StreamTarget(V3ioDriver(v3io_web_api, v3io_acceess_key), "features_stream")
]).run()

We can also create a serving function, which sole purpose is to read data from the feature store and emit it further

controller = build_flow([
    SyncEmitSource(),
    QueryAggregationByKey([FieldAggregator("number_of_clicks", "click", ["count"],
                                           SlidingWindows(["1h","2h", "24h"], "10m")),
                           FieldAggregator("purchases", "purchase_amount", ["avg", "min", "max"],
                                           SlidingWindows(["1h","2h", "24h"], "10m")),
                           FieldAggregator("failed_activities", "activity", ["count"],
                                           SlidingWindows(["1h"], "10m"),
                                           aggr_filter=lambda element: element["activity_status"] == "fail"))],
                           table_object,
                           time_field="time")
]).run()

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

storey-1.7.4.tar.gz (140.1 kB view details)

Uploaded Source

Built Distribution

storey-1.7.4-py3-none-any.whl (163.3 kB view details)

Uploaded Python 3

File details

Details for the file storey-1.7.4.tar.gz.

File metadata

  • Download URL: storey-1.7.4.tar.gz
  • Upload date:
  • Size: 140.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for storey-1.7.4.tar.gz
Algorithm Hash digest
SHA256 10e8941277457538d466f03e255bb345d9861837c2c9be91fbcd8bf399dace8e
MD5 b057d39bf183cc5bbd0fe09814db6c89
BLAKE2b-256 1eb884fea278bbf665a7b6d435d72afe45517a64f91f7d111cf830d6db30d427

See more details on using hashes here.

File details

Details for the file storey-1.7.4-py3-none-any.whl.

File metadata

  • Download URL: storey-1.7.4-py3-none-any.whl
  • Upload date:
  • Size: 163.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for storey-1.7.4-py3-none-any.whl
Algorithm Hash digest
SHA256 d3f81b890f4f58300b2221f46fddf9f4097ee9ae16259a78373d40f47a22033b
MD5 4de23f1b8f0e1171c2cdea1b18ce7e65
BLAKE2b-256 c06165a91fa60df109961c3a4c2ed572c02e5e3c3c689c7d840e139ff7862899

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page