Skip to main content

Python interfaces for observational data surrounding named storm events

Project description

StormEvents

test build codecov version license style

stormevents provides Python interfaces for observational data surrounding named storm events.

pip install stormevents

Full documentation can be found at https://stormevents.readthedocs.io

Usage

There are two ways to retrieve observational data via stormevents;

  1. retrieve data for any arbitrary time interval / region, or
  2. retrieve data surrounding a specific storm.

retrieve data for any arbitrary time interval / region

stormevents currently implements retrieval for

  • storm tracks from the National Hurricane Center (NHC),
  • high-water mark (HWM) surveys provided by the United States Geological Survey (USGS), and
  • data products from the Center for Operational Oceanographic Products and Services (CO-OPS).

storm tracks from the National Hurricane Center (NHC)

The National Hurricane Center (NHC) tracks and tropical cyclones dating back to 1851.

The nhc_storms() function provides a list of NHC storms from their online archive:

from stormevents.nhc import nhc_storms

nhc_storms()
                name class  year basin  number    source          start_date            end_date
nhc_code
AL021851     UNNAMED    HU  1851    AL       2   ARCHIVE 1851-07-05 12:00:00 1851-07-05 12:00:00
AL031851     UNNAMED    TS  1851    AL       3   ARCHIVE 1851-07-10 12:00:00 1851-07-10 12:00:00
AL041851     UNNAMED    HU  1851    AL       4   ARCHIVE 1851-08-16 00:00:00 1851-08-27 18:00:00
AL051851     UNNAMED    TS  1851    AL       5   ARCHIVE 1851-09-13 00:00:00 1851-09-16 18:00:00
AL061851     UNNAMED    TS  1851    AL       6   ARCHIVE 1851-10-16 00:00:00 1851-10-19 18:00:00
...              ...   ...   ...   ...     ...       ...                 ...                 ...
CP902021      INVEST    LO  2021    CP      90  METWATCH 2021-07-24 12:00:00                 NaT
CP912021      INVEST    DB  2021    CP      91  METWATCH 2021-08-07 18:00:00                 NaT
EP922021      INVEST    DB  2021    EP      92  METWATCH 2021-06-05 06:00:00                 NaT
EP712022  GENESIS001    DB  2022    EP      71   GENESIS 2022-01-20 12:00:00                 NaT
EP902022      INVEST    LO  2022    EP      90  METWATCH 2022-01-20 12:00:00                 NaT

[2714 rows x 8 columns]
retrieve storm track by NHC code
from stormevents.nhc import VortexTrack

track = VortexTrack('AL112017')
track.data
    basin storm_number            datetime advisory_number  ... isowave_radius_for_SWQ extra_values                    geometry  track_start_time
0      AL           11 2017-08-30 00:00:00                  ...                    NaN         <NA>  POINT (-26.90000 16.10000)        2017-08-30
1      AL           11 2017-08-30 06:00:00                  ...                    NaN         <NA>  POINT (-28.30000 16.20000)        2017-08-30
2      AL           11 2017-08-30 12:00:00                  ...                    NaN         <NA>  POINT (-29.70000 16.30000)        2017-08-30
3      AL           11 2017-08-30 18:00:00                  ...                    NaN         <NA>  POINT (-30.80000 16.30000)        2017-08-30
4      AL           11 2017-08-30 18:00:00                  ...                    NaN         <NA>  POINT (-30.80000 16.30000)        2017-08-30
..    ...          ...                 ...             ...  ...                    ...          ...                         ...               ...
168    AL           11 2017-09-12 12:00:00                  ...                    NaN         <NA>  POINT (-86.90000 33.80000)        2017-08-30
169    AL           11 2017-09-12 18:00:00                  ...                    NaN         <NA>  POINT (-88.10000 34.80000)        2017-08-30
170    AL           11 2017-09-13 00:00:00                  ...                    NaN         <NA>  POINT (-88.90000 35.60000)        2017-08-30
171    AL           11 2017-09-13 06:00:00                  ...                    NaN         <NA>  POINT (-89.50000 36.20000)        2017-08-30
172    AL           11 2017-09-13 12:00:00                  ...                    NaN         <NA>  POINT (-90.10000 36.80000)        2017-08-30

[173 rows x 38 columns]
retrieve storm track by name and year

If you do not know the storm code, you can input the storm name and year:

from stormevents.nhc import VortexTrack

VortexTrack.from_storm_name('irma', 2017)
VortexTrack('AL112017', Timestamp('2017-08-30 00:00:00'), Timestamp('2017-09-13 12:00:00'), <ATCF_FileDeck.BEST: 'b'>, [<ATCF_Advisory.BEST: 'BEST'>], None)
specify storm track file deck

By default, VortexTrack retrieves data from the BEST track file deck (b). You can specify that you want the ADVISORY (a) or FIXED (f) file decks with the file_deck parameter.

from stormevents.nhc import VortexTrack

track = VortexTrack('AL112017', file_deck='a')
track.data
      basin storm_number            datetime advisory_number  ... isowave_radius_for_SWQ extra_values                    geometry    track_start_time
0        AL           11 2017-08-27 06:00:00              01  ...                    NaN         <NA>  POINT (-17.40000 11.70000) 2017-08-28 06:00:00
1        AL           11 2017-08-27 12:00:00              01  ...                    NaN         <NA>  POINT (-17.90000 11.80000) 2017-08-28 06:00:00
2        AL           11 2017-08-27 18:00:00              01  ...                    NaN         <NA>  POINT (-18.40000 11.90000) 2017-08-28 06:00:00
3        AL           11 2017-08-28 00:00:00              01  ...                    NaN         <NA>  POINT (-19.00000 12.00000) 2017-08-28 06:00:00
4        AL           11 2017-08-28 06:00:00              01  ...                    NaN         <NA>  POINT (-19.50000 12.00000) 2017-08-28 06:00:00
...     ...          ...                 ...             ...  ...                    ...          ...                         ...                 ...
10739    AL           11 2017-09-12 00:00:00              03  ...                    NaN         <NA>  POINT (-84.40000 31.90000) 2017-09-12 00:00:00
10740    AL           11 2017-09-12 03:00:00              03  ...                    NaN         <NA>  POINT (-84.90000 32.40000) 2017-09-12 00:00:00
10741    AL           11 2017-09-12 12:00:00              03  ...                    NaN         <NA>  POINT (-86.40000 33.80000) 2017-09-12 00:00:00
10742    AL           11 2017-09-13 00:00:00              03  ...                    NaN         <NA>  POINT (-88.20000 35.20000) 2017-09-12 00:00:00
10743    AL           11 2017-09-13 12:00:00              03  ...                    NaN         <NA>  POINT (-88.60000 36.40000) 2017-09-12 00:00:00

[10434 rows x 38 columns]
read storm track from file

If you have an ATCF or fort.22 file, use the corresponding methods:

from stormevents.nhc import VortexTrack

VortexTrack.from_file('tests/data/input/test_vortex_track_from_file/AL062018.dat')
VortexTrack('AL062018', Timestamp('2018-08-30 06:00:00'), Timestamp('2018-09-18 12:00:00'), None, <ATCF_Mode.HISTORICAL: 'ARCHIVE'>, ['BEST', 'OFCL', 'OFCP', 'HMON', 'CARQ', 'HWRF'], PosixPath('/home/zrb/Projects/StormEvents/tests/data/input/test_vortex_track_from_file/AL062018.dat'))
from stormevents.nhc import VortexTrack

VortexTrack.from_file('tests/data/input/test_vortex_track_from_file/irma2017_fort.22')
VortexTrack('AL112017', Timestamp('2017-09-05 00:00:00'), Timestamp('2017-09-12 00:00:00'), None, <ATCF_Mode.HISTORICAL: 'ARCHIVE'>, ['BEST', 'OFCL', 'OFCP', 'HMON', 'CARQ', 'HWRF'], PosixPath('/home/zrb/Projects/StormEvents/tests/data/input/test_vortex_track_from_file/irma2017_fort.22'))
write storm track to fort.22 file
from stormevents.nhc import VortexTrack

track = VortexTrack.from_storm_name('florence', 2018)
track.to_file('fort.22')

high-water mark (HWM) surveys provided by the United States Geological Survey (USGS)

The United States Geological Survey (USGS) conducts surveys of flooded areas following flood events to determine the highest level of water elevation, and provides the results of these surveys via their API.

list flood events defined by the USGS that have HWM surveys
from stormevents.usgs import usgs_flood_events

usgs_flood_events()
                                            name  year                                        description  ... last_updated_by          start_date            end_date
usgs_id                                                                                                    ...
7                             FEMA 2013 exercise  2013                   Ardent/Sentry 2013 FEMA Exercise  ...             NaN 2013-05-15 04:00:00 2013-05-23 04:00:00
8                                          Wilma  2005  Category 3 in west FL. \nHurricane Wilma was t...  ...             NaN 2005-10-20 00:00:00 2005-10-31 00:00:00
9                            Midwest Floods 2011  2011  Spring and summer 2011 flooding of the Mississ...  ...            35.0 2011-02-01 06:00:00 2011-08-30 05:00:00
10                          2013 - June PA Flood  2013           Localized summer rain, small scale event  ...             NaN 2013-06-23 00:00:00 2013-07-01 00:00:00
11               Colorado 2013 Front Range Flood  2013  A large prolonged precipitation event resulted...  ...            35.0 2013-09-12 05:00:00 2013-09-24 05:00:00
...                                          ...   ...                                                ...  ...             ...                 ...                 ...
312                    2021 Tropical Cyclone Ida  2021                                                NaN  ...           864.0 2021-08-27 05:00:00 2021-09-03 05:00:00
313                Chesapeake Bay - October 2021  2021     Coastal-flooding event in the  Chesapeake Bay.  ...           406.0 2021-10-28 04:00:00                 NaT
314      2021 November Flooding Washington State  2021                         Atmospheric River Flooding  ...           864.0 2021-11-08 06:00:00 2021-11-19 06:00:00
315          Washington Coastal Winter 2021-2022  2021                                                NaN  ...           864.0 2021-11-01 05:00:00 2022-06-30 05:00:00
317        2022 Hunga Tonga-Hunga Haapai tsunami  2022                                                     ...             1.0 2022-01-14 05:00:00 2022-01-18 05:00:00

[293 rows x 11 columns]
retrieve HWM survey data for any flood event
from stormevents.usgs import USGS_Event

flood = USGS_Event(182)
flood.high_water_marks()
         latitude  longitude            eventName hwmTypeName  ... hwm_uncertainty                                          hwm_notes siteZone                    geometry
hwm_id                                                         ...
22602   31.170642 -81.428402  Irma September 2017      Debris  ...             NaN                                                NaN      NaN  POINT (-81.42840 31.17064)
22605   31.453850 -81.362853  Irma September 2017   Seed line  ...             0.1                                                NaN      NaN  POINT (-81.36285 31.45385)
22612   30.720000 -81.549440  Irma September 2017   Seed line  ...             NaN  There is a secondary peak around 5.5 ft, so th...      NaN  POINT (-81.54944 30.72000)
22636   32.007730 -81.238270  Irma September 2017   Seed line  ...             0.1  Trimble R8 used to establish TBM. Levels ran f...      NaN  POINT (-81.23827 32.00773)
22653   31.531078 -81.358894  Irma September 2017   Seed line  ...             NaN                                                NaN      NaN  POINT (-81.35889 31.53108)
...           ...        ...                  ...         ...  ...             ...                                                ...      ...                         ...
26171   18.470402 -66.246631  Irma September 2017      Debris  ...             0.5                                                NaN      NaN  POINT (-66.24663 18.47040)
26173   18.470300 -66.449900  Irma September 2017      Debris  ...             0.5                                levels from GNSS BM      NaN  POINT (-66.44990 18.47030)
26175   18.463954 -66.140869  Irma September 2017      Debris  ...             0.5                                levels from GNSS BM      NaN  POINT (-66.14087 18.46395)
26177   18.488720 -66.392160  Irma September 2017      Debris  ...             0.5                                levels from GNSS BM      NaN  POINT (-66.39216 18.48872)
26179   18.005607 -65.871768  Irma September 2017      Debris  ...             0.5                                levels from GNSS BM      NaN  POINT (-65.87177 18.00561)

[506 rows x 53 columns]
from stormevents.usgs import USGS_Event

flood = USGS_Event(182)
flood.high_water_marks(quality=['EXCELLENT', 'GOOD'])
         latitude  longitude            eventName hwmTypeName  ...                                          hwm_notes peak_summary_id siteZone                    geometry
hwm_id                                                         ...
22605   31.453850 -81.362853  Irma September 2017   Seed line  ...                                                NaN             NaN      NaN  POINT (-81.36285 31.45385)
22612   30.720000 -81.549440  Irma September 2017   Seed line  ...  There is a secondary peak around 5.5 ft, so th...             NaN      NaN  POINT (-81.54944 30.72000)
22636   32.007730 -81.238270  Irma September 2017   Seed line  ...  Trimble R8 used to establish TBM. Levels ran f...             NaN      NaN  POINT (-81.23827 32.00773)
22674   32.030907 -80.900605  Irma September 2017   Seed line  ...                                                NaN          5042.0      NaN  POINT (-80.90061 32.03091)
22849   30.741940 -81.687780  Irma September 2017      Debris  ...                                                NaN          4834.0      NaN  POINT (-81.68778 30.74194)
...           ...        ...                  ...         ...  ...                                                ...             ...      ...                         ...
25150   30.038222 -81.880928  Irma September 2017   Seed line  ...                              GNSS Level II survey.             NaN      NaN  POINT (-81.88093 30.03822)
25151   30.118110 -81.760220  Irma September 2017   Seed line  ...                             GNSS Level III survey.             NaN      NaN  POINT (-81.76022 30.11811)
25158   29.720560 -81.506110  Irma September 2017   Seed line  ...                              GNSS Level II survey.             NaN      NaN  POINT (-81.50611 29.72056)
25159   30.097514 -81.794375  Irma September 2017   Seed line  ...                             GNSS Level III survey.             NaN      NaN  POINT (-81.79438 30.09751)
25205   29.783890 -81.263060  Irma September 2017   Seed line  ...                              GNSS Level II survey.             NaN      NaN  POINT (-81.26306 29.78389)

[277 rows x 53 columns]

retrieve data surrounding a specific storm

The StormEvent class provides an interface to retrieve data within the time interval and spatial bounds of a specific storm event.

You can create a new StormEvent object from a storm name and year,

from stormevents import StormEvent

StormEvent('FLORENCE', 2018)
StormEvent(name='FLORENCE', year=2018, start_date=Timestamp('2018-08-30 06:00:00'), end_date=Timestamp('2018-09-18 12:00:00'))

or from a storm NHC code,

from stormevents import StormEvent

StormEvent.from_nhc_code('EP172016')
StormEvent(name='PAINE', year=2016, start_date=Timestamp('2016-09-18 00:00:00'), end_date=Timestamp('2016-09-21 12:00:00'))

or from a USGS flood event ID.

from stormevents import StormEvent

StormEvent.from_usgs_id(310)
StormEvent(name='HENRI', year=2021, start_date=Timestamp('2021-08-20 18:00:00'), end_date=Timestamp('2021-08-24 12:00:00'))

To constrain the time interval, you can provide an absolute time range,

from stormevents import StormEvent
from datetime import datetime

StormEvent('paine', 2016, start_date='2016-09-19', end_date=datetime(2016, 9, 19, 12))
StormEvent(name='PAINE', year=2016, start_date=datetime.datetime(2016, 9, 19, 0, 0), end_date=datetime.datetime(2016, 9, 19, 12, 0))
from stormevents import StormEvent
from datetime import datetime

StormEvent('paine', 2016, end_date=datetime(2016, 9, 19, 12))
StormEvent(name='PAINE', year=2016, start_date=Timestamp('2016-09-18 00:00:00'), end_date=datetime.datetime(2016, 9, 19, 12, 0))

or, alternatively, you can provide relative time deltas, which will be interpreted compared to the absolute time interval provided by the NHC.

from stormevents import StormEvent
from datetime import timedelta

StormEvent('florence', 2018, start_date=timedelta(days=2))  # <- start 2 days after NHC start time
StormEvent(name='FLORENCE', year=2018, start_date=Timestamp('2018-09-01 06:00:00'), end_date=Timestamp('2018-09-18 12:00:00'))
from stormevents import StormEvent
from datetime import timedelta

StormEvent(
    'henri',
    2021,
    start_date=timedelta(days=-3),  # <- start 3 days before NHC end time
    end_date=timedelta(days=-2),  # <- end 2 days before NHC end time
)
StormEvent(name='HENRI', year=2021, start_date=Timestamp('2021-08-21 12:00:00'), end_date=Timestamp('2021-08-22 12:00:00'))
from stormevents import StormEvent
from datetime import timedelta

StormEvent('ida', 2021, end_date=timedelta(days=2))  # <- end 2 days after NHC start time
StormEvent(name='IDA', year=2021, start_date=Timestamp('2021-08-27 18:00:00'), end_date=Timestamp('2021-08-29 18:00:00'))

retrieve data for a storm

The following methods are very similar to the data getter functions detailed above. However, these methods are tied to a specific storm event, and will focus on retrieving data within the spatial region and time interval of their specific storm event.

track data from the National Hurricane Center (NHC)
from stormevents import StormEvent

storm = StormEvent('florence', 2018)
storm.track()
VortexTrack('AL062018', Timestamp('2018-08-30 06:00:00'), Timestamp('2018-09-18 12:00:00'), <ATCF_FileDeck.BEST: 'b'>, <ATCF_Mode.HISTORICAL: 'ARCHIVE'>, [<ATCF_Advisory.BEST: 'BEST'>], None)
from stormevents import StormEvent

storm = StormEvent('florence', 2018)
storm.track(file_deck='a')
VortexTrack('AL062018', Timestamp('2018-08-30 06:00:00'), Timestamp('2018-09-18 12:00:00'), <ATCF_FileDeck.ADVISORY: 'a'>, <ATCF_Mode.HISTORICAL: 'ARCHIVE'>, ['OFCL', 'OFCP', 'HMON', 'CARQ', 'HWRF'], None)
high-water mark (HWM) surveys provided by the United States Geological Survey (USGS)
from stormevents import StormEvent

storm = StormEvent('florence', 2018)
flood = storm.flood_event
flood.high_water_marks()
         latitude  longitude          eventName  ... siteZone peak_summary_id                    geometry
hwm_id                                           ...
33496   37.298440 -80.007750  Florence Sep 2018  ...      NaN             NaN  POINT (-80.00775 37.29844)
33497   33.699720 -78.936940  Florence Sep 2018  ...      NaN             NaN  POINT (-78.93694 33.69972)
33498   33.758610 -78.792780  Florence Sep 2018  ...      NaN             NaN  POINT (-78.79278 33.75861)
33499   33.641389 -78.947778  Florence Sep 2018  ...                      NaN  POINT (-78.94778 33.64139)
33500   33.602500 -78.973889  Florence Sep 2018  ...                      NaN  POINT (-78.97389 33.60250)
...           ...        ...                ...  ...      ...             ...                         ...
34872   35.534641 -77.038183  Florence Sep 2018  ...      NaN             NaN  POINT (-77.03818 35.53464)
34873   35.125000 -77.050044  Florence Sep 2018  ...      NaN             NaN  POINT (-77.05004 35.12500)
34874   35.917467 -76.254367  Florence Sep 2018  ...      NaN             NaN  POINT (-76.25437 35.91747)
34875   35.111000 -77.037851  Florence Sep 2018  ...      NaN             NaN  POINT (-77.03785 35.11100)
34876   35.301135 -77.264727  Florence Sep 2018  ...      NaN             NaN  POINT (-77.26473 35.30114)

[644 rows x 53 columns]
products from the Center for Operational Oceanographic Products and Services (CO-OPS)
from stormevents import StormEvent

storm = StormEvent('florence', 2018)
storm.coops_product_within_isotach('water_level', wind_speed=34, start_date='2018-09-12 14:03:00', end_date='2018-09-14')
<xarray.Dataset>
Dimensions:  (nos_id: 7, t: 340)
Coordinates:
  * nos_id   (nos_id) int64 8651370 8652587 8654467 ... 8658120 8658163 8661070
  * t        (t) datetime64[ns] 2018-09-12T14:06:00 ... 2018-09-14
    nws_id   (nos_id) <U5 'DUKN7' 'ORIN7' 'HCGN7' ... 'WLON7' 'JMPN7' 'MROS1'
    x        (nos_id) float64 -75.75 -75.56 -75.69 -76.69 -77.94 -77.81 -78.94
    y        (nos_id) float64 36.19 35.78 35.22 34.72 34.22 34.22 33.66
Data variables:
    v        (nos_id, t) float32 7.181 7.199 7.144 7.156 ... 9.6 9.634 9.686
    s        (nos_id, t) float32 0.317 0.36 0.31 0.318 ... 0.049 0.047 0.054
    f        (nos_id, t) object '0,0,0,0' '0,0,0,0' ... '0,0,0,0' '0,0,0,0'
    q        (nos_id, t) object 'v' 'v' 'v' 'v' 'v' 'v' ... 'v' 'v' 'v' 'v' 'v'

Related Projects

Acknowledgements

Original methodology for retrieving NHC storm tracks and CO-OPS tidal data was written by @jreniel for adcircpy.

Original methodology for retrieving USGS high-water mark surveys and CO-OPS tidal station metadata was written by @moghimis and @grapesh for csdllib.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

stormevents-2.1.4-py3-none-any.whl (68.3 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page