StratoDem Analytics API tools
Project description
Strato-Query
tools to help create queries to StratoDem's API
Installation and usage
Python:
$ pip install strato-query
R:
library(devtools)
devtools::install_github('StratoDem/strato-query')
Authentication
strato_query
looks for an API_TOKEN
environment variable.
# Example passing a StratoDem Analytics API token to a Python file using the API
$ API_TOKEN=my-api-token-here python examples/examples.py
Median household income for 80+ households across the US, by year
Python:
from strato_query.base_API_query import *
from strato_query.standard_filters import *
# Finds median household income in the US for those 80+ from 2010 to 2013
df = BaseAPIQuery.query_api_df(
query_params=APIMedianQueryParams(
query_type='MEDIAN',
table='incomeforecast_us_annual_income_group_age',
data_fields=('year', {'median_value': 'median_income'}),
median_variable_name='income_g',
data_filters=(
GtrThanOrEqFilter(var='age_g', val=17).to_dict(),
BetweenFilter(var='year', val=[2010, 2013]).to_dict(),
),
groupby=('year',),
order=('year',),
aggregations=(),
)
)
print('Median US household income 80+:')
print(df.head())
R:
library(stRatoquery)
# Finds median household income in the US for those 80+ from 2010 to 2013
df = submit_api_query(
query = median_query_params(
table = 'incomeforecast_us_annual_income_group_age',
data_fields = api_fields(fields_list = list('year', 'geoid2', list(median_value = 'median_hhi'))),
data_filters = list(
ge_filter(filter_variable = 'age_g', filter_value = 17),
between_filter(filter_variable = 'year', filter_value = c(2010, 2013))
),
groupby=c('year'),
median_variable_name='income_g',
aggregations=list()
),
apiToken = 'my-api-token-here')
print('Median US household income 80+:')
print(head(df))
Output:
Median US household income 80+:
MEDIAN_VALUE YEAR
0 27645 2010
1 29269 2011
2 30474 2012
3 30712 2013
Population density in the Boston MSA
Python:
from strato_query.base_API_query import *
from strato_query.standard_filters import *
df = BaseAPIQuery.query_api_df(
query_params=APIQueryParams(
query_type='COUNT',
table='populationforecast_metro_annual_population',
data_fields=('year', 'cbsa', {'population': 'population'}),
data_filters=(
LessThanFilter(var='year', val=2015).to_dict(),
EqFilter(var='cbsa', val=14454).to_dict(),
),
aggregations=(dict(aggregation_func='sum', variable_name='population'),),
groupby=('cbsa', 'year'),
order=('year',),
join=APIQueryParams(
query_type='AREA',
table='geocookbook_metro_na_shapes_full',
data_fields=('cbsa', 'area', 'name'),
data_filters=(),
groupby=('cbsa', 'name'),
aggregations=(),
on=dict(left=('cbsa',), right=('cbsa',)),
)
)
)
df['POP_PER_SQ_MI'] = df['POPULATION'].div(df['AREA'])
df_final = df[['YEAR', 'NAME', 'POP_PER_SQ_MI']]
print('Population density in the Boston MSA up to 2015:')
print(df_final.head())
print('Results truncated')
R:
library(stRatoquery)
df = submit_api_query(
query = api_query_params(
table = 'populationforecast_metro_annual_population',
data_fields = api_fields(fields_list = list('year', 'cbsa', list(population = 'population'))),
data_filters = list(
lt_filter(filter_variable = 'year', filter_value = 2015),
eq_filter(filter_variable = 'cbsa', filter_value = 14454)
),
groupby=c('year'),
aggregations = list(sum_aggregation(variable_name = 'population')),
join = api_query_params(
table = 'geocookbook_metro_na_shapes_full',
query_type = 'AREA',
data_fields = api_fields(fields_list = list('cbsa', 'area', 'name')),
data_filters = list(),
groupby = c('cbsa', 'name'),
aggregations = list(),
on = list(left = c('cbsa'), right = c('cbsa'))
)
),
apiToken = 'my-api-token-here')
Output:
Population density in the Boston MSA up to 2015:
YEAR NAME POP_PER_SQ_MI
0 2000 Boston, MA 1139.046639
1 2001 Boston, MA 1149.129937
2 2002 Boston, MA 1153.094740
3 2003 Boston, MA 1152.352351
4 2004 Boston, MA 1149.932307
Results truncated
Example use of query base class with API call and example filter
from strato_query.base_API_query import *
from strato_query.standard_filters import *
class ExampleAPIQuery(BaseAPIQuery):
@classmethod
def get_df_from_API_call(cls, **kwargs):
# This API call will return the population 65+ in 2018 within 5 miles of the lat/long pair
age_filter = GtrThanOrEqFilter(
var='age_g',
val=14).to_dict()
year_filter = EqFilter(
var='year',
val=2018).to_dict()
mile_radius_filter = dict(
filter_type='mile_radius',
filter_value=dict(
latitude=26.606484,
longitude=-81.851531,
miles=5),
filter_variable='')
df = cls.query_api_df(
query_params=APIQueryParams(
table='populationforecast_tract_annual_population_age',
data_fields=('POPULATION',),
data_filters=(age_filter, year_filter, mile_radius_filter),
query_type='COUNT',
aggregations=(),
groupby=()
)
)
return df
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
strato_query-3.10.2.tar.gz
(16.3 kB
view details)
Built Distribution
File details
Details for the file strato_query-3.10.2.tar.gz
.
File metadata
- Download URL: strato_query-3.10.2.tar.gz
- Upload date:
- Size: 16.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2b88e5bfddae1536e02fb149a2cb297baab9930b80affc1916524f7dd4c13490 |
|
MD5 | 02e416ab98720f3a2f4beae07ff5b1ef |
|
BLAKE2b-256 | a9a34c3071318db948b26065f203152c1cc651bbefd3c945e1a9d439ebcbc59e |
File details
Details for the file strato_query-3.10.2-py3-none-any.whl
.
File metadata
- Download URL: strato_query-3.10.2-py3-none-any.whl
- Upload date:
- Size: 17.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 87797a8b60cd39cfd6be56bdbdbca64a03f1f30a819d3283d15b6a6211eba891 |
|
MD5 | 1a797bcc8003999662987e6fba0cb12e |
|
BLAKE2b-256 | 668a265accb73dda507bb4e90f0f4051d3c63b3ec91f3179bef85c08ba30f901 |