Skip to main content

A streamlit component, to make chatbots

Project description

st-chat

Streamlit Component, for a Chat-bot UI, example app

authors - @yashppawar & @YashVardhan-AI

Installation

Install streamlit-chat with pip

pip install streamlit-chat 

usage, import the message function from streamlit_chat

import streamlit as st
from streamlit_chat import message

message("My message") 
message("Hello bot!", is_user=True)  # align's the message to the right

Screenshot

chatbot-og

Another example for html in chat, and Refresh chat button

import streamlit as st
from streamlit_chat import message
from streamlit.components.v1 import html

def on_input_change():
    user_input = st.session_state.user_input
    st.session_state.past.append(user_input)
    st.session_state.generated.append("The messages from Bot\nWith new line")

def on_btn_click():
    del st.session_state.past[:]
    del st.session_state.generated[:]

audio_path = "https://docs.google.com/uc?export=open&id=16QSvoLWNxeqco_Wb2JvzaReSAw5ow6Cl"
img_path = "https://www.groundzeroweb.com/wp-content/uploads/2017/05/Funny-Cat-Memes-11.jpg"
youtube_embed = '''
<iframe width="400" height="215" src="https://www.youtube.com/embed/LMQ5Gauy17k" title="YouTube video player" frameborder="0" allow="accelerometer; encrypted-media;"></iframe>
'''

markdown = """
### HTML in markdown is ~quite~ **unsafe**
<blockquote>
  However, if you are in a trusted environment (you trust the markdown). You can use allow_html props to enable support for html.
</blockquote>

* Lists
* [ ] todo
* [x] done

Math:

Lift($L$) can be determined by Lift Coefficient ($C_L$) like the following
equation.

$$
L = \\frac{1}{2} \\rho v^2 S C_L
$$

~~~py
import streamlit as st

st.write("Python code block")
~~~

~~~js
console.log("Here is some JavaScript code")
~~~

"""

table_markdown = '''
A Table:

| Feature     | Support              |
| ----------: | :------------------- |
| CommonMark  | 100%                 |
| GFM         | 100% w/ `remark-gfm` |
'''

st.session_state.setdefault(
    'past', 
    ['plan text with line break',
     'play the song "Dancing Vegetables"', 
     'show me image of cat', 
     'and video of it',
     'show me some markdown sample',
     'table in markdown']
)
st.session_state.setdefault(
    'generated', 
    [{'type': 'normal', 'data': 'Line 1 \n Line 2 \n Line 3'},
     {'type': 'normal', 'data': f'<audio controls src="{audio_path}"></audio>'}, 
     {'type': 'normal', 'data': f'<img width="100%" height="200" src="{img_path}"/>'}, 
     {'type': 'normal', 'data': f'{youtube_embed}'},
     {'type': 'normal', 'data': f'{markdown}'},
     {'type': 'table', 'data': f'{table_markdown}'}]
)

st.title("Chat placeholder")

chat_placeholder = st.empty()

with chat_placeholder.container():    
    for i in range(len(st.session_state['generated'])):                
        message(st.session_state['past'][i], is_user=True, key=f"{i}_user")
        message(
            st.session_state['generated'][i]['data'], 
            key=f"{i}", 
            allow_html=True,
            is_table=True if st.session_state['generated'][i]['type']=='table' else False
        )
    
    st.button("Clear message", on_click=on_btn_click)

with st.container():
    st.text_input("User Input:", on_change=on_input_change, key="user_input")

Screenshot

chatbot-markdown-sp

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

streamlit-chat-askgdpr-0.1.tar.gz (2.7 MB view hashes)

Uploaded Source

Built Distribution

streamlit_chat_askgdpr-0.1-py3-none-any.whl (2.7 MB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page